PolyCLEAN:

A Polyatomic Frank-Wolfe Algorithm for Interferometric Imaging

Adrian Jarret, Julien Fageot, Matthieu Simeoni

Laboratory of AudioVisual Communications - EPFL Center for Imaging École Polytechnique Fédérale de Lausanne (EPFL)

Interferometric Imaging Measurement Equation

Two main approaches based on sparsity priors

1. Sparse Decomposition with CLEAN

Algorithm 1 Högbom CLEAN Algorithm (Major cycles only) Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}, \alpha > 0$

CLEAN
assumption:
$$I_{
m CLEAN} = \sum a_n \delta_{s_n}$$

for
$$k = 1, 2, \dots, k_{\max}$$
 do
1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$
2. Find the next reconstructed source: $s^{(k)} = \arg \max \mathbf{I}_{R}^{(k)}$
3. Update the iterate: $\mathbf{I}^{(k)} = \mathbf{I}^{(k-1)} + \alpha \delta_{s^{(k)}}$
end for

Efficient implementation (fast algorithm, convolutions)

Calibration-compliant

Scalable (sparse iterates)

Objective function unclear Stopping criterion unclear Dictionary-based priors

2. Bayesian MAP Estimation

A Unifying Algorithm: PolyCLEAN

We propose **PolyCLEAN**: a principled algorithm to solve a **LASSO problem** while maintaining a **CLEAN-like** atomic architecture

 $\left| \underset{\mathbf{I} > 0}{\arg\min} \frac{1}{2} \| \mathbf{V} - \mathbf{\Phi} \mathbf{I} \|_{2}^{2} + \lambda \| \mathbf{I} \|_{1} \right|$

Sparse iterates : scalable method **Explicit prior** : principled algorithm and stopping criterion

Generalization to extended sources reconstruction with sparse representations over wavelet coefficients:

$$\underset{\boldsymbol{\Theta}}{\operatorname{arg\,min}} \frac{1}{2} \| \mathbf{V} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\Theta} \|_{2}^{2} + \lambda \| \boldsymbol{\Theta} \|_{1}$$

Image \mathbf{I} Coefficients

Algorithm 2 PolyCLEAN Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \ \mathcal{S}^{(0)} = \operatorname{Supp}(\mathbf{I}^{(0)}) = \emptyset, \ \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}$

while stopping_criterion($\mathbf{I}^{(k)}$) not reached do 1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$

- 2. Place many candidate sources: $s_1^{(k)}, s_2^{(k)}, \dots = \texttt{highest_level_set}(\mathbf{I}_R^{(k)})$ Update active set : $\mathcal{S}^{(k)} \leftarrow \mathcal{S}^{(k-1)} \cup \{s_1^{(k)}, s_2^{(k)}, \dots\}$
- 3. Update the iterate:

 $\mathbf{I}^{(k)} = \underset{\mathbf{I} \ge 0}{\operatorname{arg\,min}} \frac{1}{2} \left\| \mathbf{V} - \mathbf{\Phi} \mathbf{I} \right\|_{2}^{2} + \lambda \left\| \mathbf{I} \right\|_{1}$

end while

Efficient computation of the forward operator ${f \Phi}$ with NUFFT Ref: M. Simeoni et al

Support of potential solutions:

Dual certificate at convergence

 (\mathbf{R})

Take-Home Messages

Numerical Experiments Source image CLEAN PolyCLEAN

Simulated Image Parameters

imaging in a fast and efficient manner, with an atomic **CLEAN-like** method.

	CLEAN	MAP Estimation	PolyCLEAN
Sparse iterates	\checkmark	X	\checkmark
Flexible priors	X	\checkmark	~
Fast solvers	~	\checkmark	\checkmark
Calibration compliant	\checkmark	X	\checkmark
Objective function	X	\checkmark	\checkmark

PolyCLEAN also handles extended celestial sources using sparse wavelet coefficients representation.

This work was funded by the Swiss National Science Foundation under grant CRSII5_193826 "AstroSignals: A New Window on the Universe, with the New Generation of Large Radio-Astronomy Facilities, Sinergia"