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Abstract- We propose a fast and scalable Polyatomic 
Frank-Wolfe (P-FW) algorithm for the resolution of 
high-dimensional LASSO regression problems. This algorithm 
improves upon traditional Frank-Wolfe methods by considering 
generalized greedy steps with polyatomic updates, hence 
allowing for a more efficient exploration of the search space. To 
preserve sparsity of the intermediate iterates, we re-optimize 
the LASSO problem over the set of selected atoms at each 
iteration. For efficiency reasons, the accuracy of this 
re-optimization step is relatively low for early iterations and 
gradually increases with the iteration count. We provide 
convergence guarantees for our algorithm and validate it in 
simulated compressed sensing setups. Our experiments reveal 
that P-FW outperforms state-of-the-art methods in terms of 
runtime, both for FW methods and optimal first-order proximal 
gradient methods such as the Fast Iterative Soft-Thresholding 
Algorithm (FISTA).
The code is accessible on GitHub: AdriaJ/PolyatomicFW SPL
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Theorem 1: (Convergence of Polyatomic Frank-Wolfe) 

Simulated measurements:

● Let :

● Then :

Selected references:
● M. Jaggi, “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization,” in 

Proceedings of the 30th International Conference on Machine Learning, Feb. 2013, pp. 
427–435.

● Q. Denoyelle, V. Duval, G. Peyré, and E. Soubies, “The sliding Frank–Wolfe algorithm and 
its application to super-resolution microscopy,” Inverse Problems, vol. 36, no. 1, p. 
014001, Jan. 2020.

● M. Simeoni et al. (2021). GitHub: matthieumeo/pycsou: Pycsou 1.0.6

Sparsity
index:

Measurements vector
Measurement operator

Regularization parameter

Context: The LASSO optimization problem is commonly used to solve 
linear inverse problems with a sparsity prior, such as sparse 
reconstruction in signal processing or variable selection in statistics.

Motivation: Scalability
This problem does not admit closed-form solution and thus requires to 
be solved numerically. We currently benefit from fast algorithms, such 
as FISTA, that are able to reach a convergence rate of              . 
In some high dimensional applications, it becomes difficult, sometimes 
impossible, to apply these methods, mainly for memory requirements.
We study the Frank-Wolfe algorithm, an optimization method with a 
greedy behavior, in order to circumvent this limitation.

The standard algorithm: A greedy behavior

When applying FW to the LASSO, the atoms created at step 1 are 
canonical basis vectors of       (scaled with a multiplicative signed 
factor): at each iteration, the algorithm updates a single coordinate.
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Sparse iterates: Scalability

FW for the LASSO: Shape of the atoms
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Our algorithm: faster convergence, no oscillation

5. Simulation setup4. Comparison

1

2

1

2

Random sparse image:

Partial correction: During this step of PFW, we run an instance of an 
optimization algorithm (ISTA) to re-evaluate all the weights. We enforce 
an early stopping criterion to keep the iterations quick, that gets more 
precise along the iterations to obtain a fine convergence. Gaussian 

noise

Experiences: We report the minimum value of the LASSO objective 
function obtained with four different algorithms with respect to running 
time. We repeat the experiences for different ground truth sparsity 
index     and different number of measurements    .

Conclusion: PFW performs better than the other FW algorithms 
(Vanilla et Fully-Corrective variants). The performances are equivalent 
to FISTA and usually better in the context of sparse solutions.
We also report that PFW is more likely to scale better than proximal 
methods like FISTA in large dimension due to its sparse iterates.

Limitations: A lot of coordinates are visited many times, leading to 
redundancy and oscillations, and thus slowing down the convergence.


