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Linear Inverse Problem
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Linear Inverse Problem
Observed area of the sky
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[Credits: Cyril Tasse and the LOFAR surveys team.]



Linear Inverse Problem
Observed area of the sky

Visibility measurements

Spatial frequency information, 
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complex valued
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Linear Inverse Problem
Observed area of the sky

Visibility measurements

Spatial frequency information, 
Fourier-like measurements,

complex valued

Interferometry operator

Depends on the location of the 
antennas (baselines)

And the observed wavelength
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[Credits: Cyril Tasse and the LOFAR surveys team.]



Challenges of RI

● Noisy measurements

Linear IP
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Challenges of RI
Linear IP

● Noisy measurements

● Ill-posed problem

● Huge volumes of data

Use of priors for 
reconstruction!
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Current 
Methods02.
The landscape of prior-based 
imaging techniques in RA
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The CLEAN-based 
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The Convex 
Optimisation Methods
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Penalty-based priors,
Bayes interpretation (MAP),

Representer theorems
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CLEAN
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CLEAN
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CLEAN
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CLEAN
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+ Optional post-processing (convolution, residual)



CLEAN-Like methods 
(continued)
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Long date expertise

A lot of hacks and tips to 
make them very fast

Atomic method (scalable)

Calibration-compliant



Long date expertise

A lot of hacks and tips to 
make them very fast

Atomic method (scalable)

Calibration-compliant

CLEAN-Like methods 
(continued)
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Only denoising = enforcing 
the prior model

Very sensitive to stop

Objective function unclear 



● History of Compressed Sensing : next generation

● Proximal methods: Fast algorithms + Convergence guarantees

○ FISTA = APGD (LOFAR sparse image reconstruction[1]) 

○ PDS (SARA algorithms[2, 3, 4])

Optimization methods
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Denoising (with only one 
parameter!)

Can handle very complex 
priors

Fast principled algorithms

Bayesian interpretation

Optimization 
methods (continued)
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Denoising (with only one 
parameter!)

Can handle very complex 
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Bayesian interpretation
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Completely different 
implementation paradigm

Scalability issues

Non calibration-compliant

Shrinkage of the 
reconstructed intensity

Didn’t reach the production stage



The CLEAN-based 
Methods

The Convex 
Optimisation Methods

Astronomers Signal processing community
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Two worlds with
 different goals and 

different constraints



PolyCLEAN
03.

The place and contribution 
of our method
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1. Optimization method

3. Focus on scalability
Sparsity-informed computations with 

Pycsou and HVOX (nufft)

2. Atomic behavior
CLEAN-like algorithmic structure

and minor cycles
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Penalty-based prior (atomic norm)
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Penalty-based prior (atomic norm)



The Landscape of Methods

PolyCLEAN

CLEAN Convex
Optimization

➕ L1 penalty and positivity
➕ Interpretability
➕ Support estimation

➕ Atomic algorithm
➕ Scalability
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The Algorithm
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1

(approximately)



Support Identification
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LASSO dual certificate:



Support Identification
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LASSO dual certificate:



Extensions
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● Extended Sources ● PolyCLEAN +



Extensions
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● Extended Sources ● PolyCLEAN +

Parametric expression of the sky image 
(dictionary, wavelets):



Extensions
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● Extended Sources ● PolyCLEAN +

Post-processing: Account for the 
shrinking of the LASSO with least 

squares reweighting

Parametric expression of the sky image 
(dictionary, wavelets):



Experiments04.
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Simulations
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1024 pixels
=

5° FOV

Point sources with 
sharp smoothing kernel

200 sources



Simulations
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Number of baselines
(SKA Low configuration):

500m    ->   18500

Sky image convolved with synthetic beam



Results
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Results
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49

Components convolved with very sharp beam
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Components convolved with very sharp beam (zoom)



Results
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Reconstruction metrics



1. Real world datasets

● Many parameters
● A lot of flexibility for

CLEAN as well as PolyCLEAN
● Difficult to simulate noise

➢ Define an experimental setup
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Perspectives
2. Extended sources

● Many possibilities:
○ Dictionary
○ Wavelets

● Few code required
○ Generic framework
○ Mostly done

3. Framework byproducts

● Analysis of the dual certificate ● Bayesian tests



CREDITS: This presentation template was created by 
Slidesgo, including icons by Flaticon, and infographics & 
images by Freepik. 

Thanks!

53

CLEAN MAP 
Estimation PolyCLEAN

Sparse 
iterates ✅ ❌ ✅
Flexible 
priors ❌ ✅

Fast solvers ✅ ✅
Calibration 
compliant ✅ ❌ ✅

Interpretable 
obj. function ❌ ✅ ✅

~
~

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr


Sensibility of CLEAN w.r.t stop
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Iterations 500 1000 2000 3000

Run time (s) 12.6 44.8 81.0 107.2

MSE (e-3) 0.6 1.1 2.7 3.7
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Sparsity issue
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With the sizes of the data involved, LASSO solutions are not as sparse as CLEAN: 
32k vs 1k PS

Workarounds:
● Higher lambda
● More precise stopping crit

● Change the multi spikes strategy
● Gaussian dictionaries ?



Sparsity issue
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● More accuracy (so longer to run)         [PolyCLEAN+: 40s - APGD 179s - CLEAN: 24s]



The CLEAN-based 
Methods

The Convex 
Optimisation Methods

● Astronomers

● Efficient methods

● Produce science content:
End goal

● Small brick in a long 
pipeline

● Signal processing community

● Principled and satisfying methods, but 
difficulties to reach the astronomers

○ Algorithms,

○ Complex methods,

○ Scalability,

○ Lack of trust on the images.
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