PolyCLEAN

 \mathbf{O}

C

E

 \bowtie

୦

★

Convex Optimization for Radio Interferometry with a CLEAN-like Polyatomic Algorithm

> Adrian Jarret 2023.04.19

slides: adriaj.github.ic

Ć

Specificities of radio interferometry

02 State of the Art

 \star

*

Current imaging methods

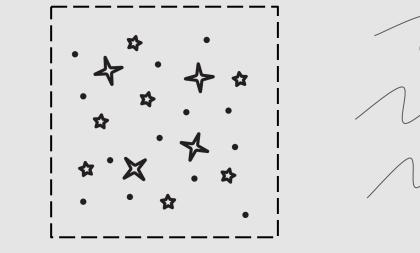
O3 PolyCLEAN

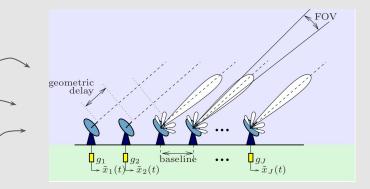
Our algorithm

04 Experiments

First results in simulations

Radio Interferometry





Sky Image

EM Waves

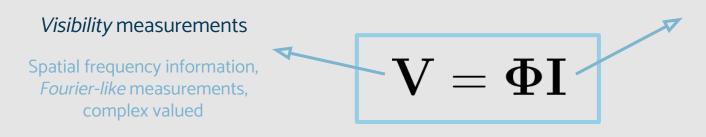
Radio Interferometer

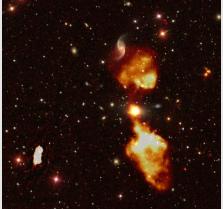
$$\mathbf{V} = \mathbf{\Phi} \mathbf{I}$$

$\mathbf{V} = \mathbf{\Phi}\mathbf{I}$

Observed area of the sky

Observed area of the sky





-6000

-4000

-2000

U (wavelengths)

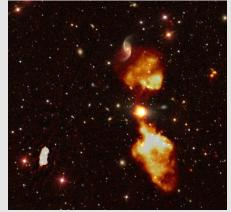
2000

4000

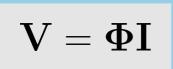
6000

Visibility measurements $\mathbf{V} = \mathbf{\Phi} \mathbf{I}$ Spatial frequency information, Fourier-like measurements, complex valued 4000 Interferometry operator 2000 wavelen Depends on the location of the antennas (baselines) -2000 $V_k = (\mathbf{\Phi}\mathbf{I})_k = \sum_{i,j} \frac{e^{-j2\pi(u_k\ell_i + v_km_j)}}{\sqrt{1 - \ell_i^2 - m_j^2}} \mathcal{W}(\ell_i, m_j; w_k) I_{i,j}$ And the observed wavelength -4000

Observed area of the sky



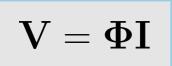
Challenges of RI



• Noisy measurements

 $\mathbf{V} = \mathbf{\Phi}\mathbf{I} + \boldsymbol{\varepsilon}$

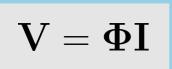
Challenges of RI



- Noisy measurements $\mathbf{V} = \mathbf{\Phi}\mathbf{I} + oldsymbol{arepsilon}$
- Ill-posed problem

$$\operatorname{Null}(\mathbf{\Phi}) \neq \{0\}$$

Challenges of RI



- Noisy measurements $\mathbf{V} = \mathbf{\Phi} \mathbf{I} + oldsymbol{arepsilon}$
- Ill-posed problem

$$\operatorname{Null}(\mathbf{\Phi}) \neq \{0\}$$

• Huge volumes of data

 $\mathbf{V} = \mathbf{\Phi} \mathbf{I}$

Challenges of RI

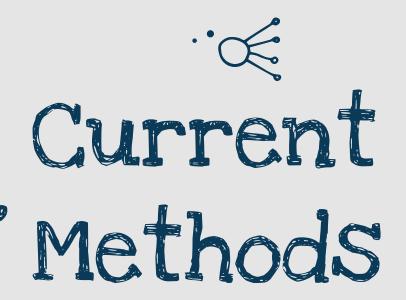
- Noisy measurements
- Ill-posed problem

$$\operatorname{Null}(\mathbf{\Phi}) \neq \{0\}$$

 $V = \Phi I + \varepsilon$

Use of priors for reconstruction!

• Huge volumes of data



A

The landscape of prior-based imaging techniques in RA

The Convex Optimisation Methods

Implicit sparse prior, Parametric shape of the solutions

The Convex Optimisation Methods

$$\mathbf{I}^*[n] = \sum_k \alpha_k g(n - n_k)$$

Implicit sparse prior, Parametric shape of the solutions

The Convex Optimisation Methods

Penalty-based priors, Bayes interpretation (MAP), Representer theorems

$$\mathbf{I}^*[n] = \sum_k \alpha_k g(n - n_k)$$

 $\arg\min\frac{1}{2}\|\mathbf{V}-\mathbf{\Phi}\mathbf{I}\|_{2}^{2}+\lambda\mathcal{R}(\mathbf{I})$

Implicit sparse prior, Parametric shape of the solutions

$$\mathbf{I}^*[n] = \sum_k \alpha_k g(n - n_k)$$

The Convex Optimisation Methods

Penalty-based priors, Bayes interpretation (MAP), Representer theorems

 $\arg\min\frac{1}{2}\|\mathbf{V}-\mathbf{\Phi}\mathbf{I}\|_{2}^{2}+\lambda\mathcal{R}(\mathbf{I})$

 $p(\mathbf{I}) \propto e^{-\mathcal{R}(\mathbf{I})}$

Implicit sparse prior, Parametric shape of the solutions

$$\mathbf{I}^*[n] = \sum_k \alpha_k \delta(n - n_k)$$

The Convex Optimisation Methods

Penalty-based priors, Bayes interpretation (MAP), Representer theorems

 $\arg\min\frac{1}{2}\|\mathbf{V}-\mathbf{\Phi}\mathbf{I}\|_{2}^{2}+\lambda\|\mathbf{I}\|_{1}$

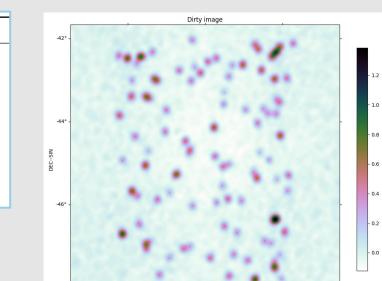
for $k = 1, 2, \dots, k_{\text{max}}$ do 1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$

- 2. Find the next reconstructed source: $s^{(k)} = \arg \max \mathbf{I}_{R}^{(k)}$
- 3. Update the iterate: $\mathbf{I}^{(k)} = \mathbf{I}^{(k-1)} + \alpha \delta_{s^{(k)}}$

end for

CLEAN

Algorithm 1 Högbom CLEAN Algorithm (Major cycles only) Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}, \alpha > 0$



00^m RA---SIN 0^h50^m

-48

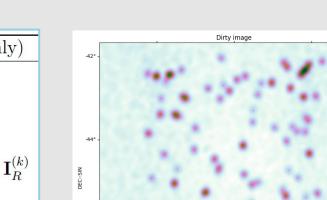
1^h10^m

CLEAN

Algorithm 1 Högbom CLEAN Algorithm (Major cycles only) Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}, \alpha > 0$

for $k = 1, 2, \dots, k_{\max}$ do 1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$ 2. Find the next reconstructed source: $s^{(k)} = \arg \max \mathbf{I}_{R}^{(k)}$ 3. Update the iterate: $\mathbf{I}^{(k)} = \mathbf{I}^{(k-1)} + \alpha \delta_{s^{(k)}}$

end for



1^h10^m

00^m RA---SIN

-46°

-48

1.2

1.0

0.8

0.6

0.4

0.2

- 0.0

0^h50^m

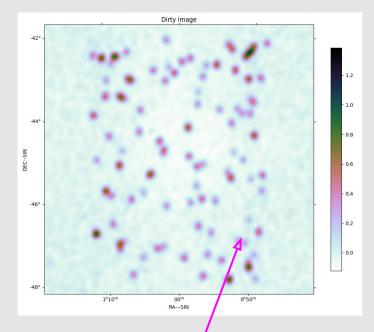
CLEAN

Algorithm 1 Högbom CLEAN Algorithm (Major cycles only) Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}, \alpha > 0$

for $k = 1, 2, \dots, k_{\max}$ do 1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$ 2. Find the next reconstructed source: $s^{(k)} = \arg \max \mathbf{I}_{R}^{(k)}$

3. Update the iterate: $\mathbf{I}^{(k)} = \mathbf{I}^{(k-1)} + \alpha \delta_{s^{(k)}}$

end for



CLEAN

Algorithm 1 Högbom CLEAN Algorithm (Major cycles only) Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}, \alpha > 0$ for $k = 1, 2, \cdots, k_{max}$ do

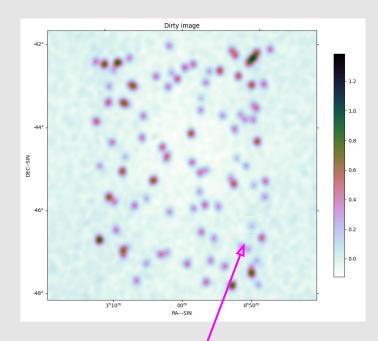
1. Compute the dirty residual:
$$\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$$

2. Find the part reconstructed sources $\mathbf{a}^{(k)}_{R} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$

- 2. Find the next reconstructed source: $s^{(k)} = \arg \max \mathbf{I}_{R}^{(k)}$
- 3. Update the iterate: $\mathbf{I}^{(k)} = \mathbf{I}^{(k-1)} + \alpha \delta_{s^{(k)}}$

end for

+ Optional post-processing (convolution, residual)



CLEAN-Like methods (continued)

✓ Long date expertise

A lot of hacks and tips to make them very fast

✓ Atomic method (scalable)

✓ Calibration-compliant

CLEAN-Like methods (continued)

✓ Long date expertise

0

A lot of hacks and tips to make them very fast

✔ Atomic method (scalable)

✔ Calibration-compliant

${\color{black}{\times}} \begin{array}{l} \text{Only denoising = enforcing} \\ \text{the prior model} \end{array}$

 \mathbf{X} Very sensitive to stop

🗙 Objective function unclear

- History of Compressed Sensing : next generation
- Proximal methods: Fast algorithms + Convergence guarantees
 - FISTA = APGD (LOFAR sparse image reconstruction^[1])

$$\mathbf{I}^{(k+1)} \leftarrow \operatorname{prox}_{\lambda \tau \mathcal{R}} \left(\mathbf{I}^{(k)} - \tau \nabla f(\mathbf{I}^{(k)}) \right)$$

• PDS (SARA algorithms^[2, 3, 4])

 $\mathbf{x}_{k+1} \leftarrow \operatorname{prox}_{\tau \mathcal{R}_1} \left(\mathbf{x}_k - \tau \nabla f(\mathbf{x}_k) - \tau \mathbf{K}^* \mathbf{z}_k \right) \qquad \mathbf{z}_{k+1} \leftarrow \operatorname{prox}_{\sigma \mathcal{R}_2^*} \left(\mathbf{z}_k + \sigma \mathbf{K} [2\mathbf{x}_{k+1} - \mathbf{x}_k] \right)$

[1] H. Garsden et al., "LOFAR sparse image reconstruction," Astronomy & Astrophysics, Mar. 2015

[2] R. E. Carrillo, J. D. McEwen, and Y. Wiaux, Monthly Notices of the Royal Astronomical Society, Oct. 2012

[3] A. Abdulaziz, A. Dabbech, and Y. Wiaux, Monthly Notices of the Royal Astronomical Society, Oct. 2019

[4] P.-A. Thouvenin, A. Abdulaziz, A. Dabbech, A. Repetti, and Y. Wiaux, Monthly Notices of the Royal Astronomical Society, 2021.

Optimization methods (continued)

Denoising (with only one parameter!)

0

Can handle very complex priors

✓ Fast principled algorithms

Bayesian interpretation

Optimization methods (continued)

0

Denoising (with only one parameter!)

Can handle very complex priors

✓ Fast principled algorithms

Bayesian interpretation

 Completely different implementation paradigm
 Scalability issues
 Non calibration-compliant
 Shrinkage of the reconstructed intensity

Didn't reach the production stage

Astronomers

The Convex Optimisation Methods

Signal processing community

Two worlds with different goals and different constraints

The place and contribution of our method

PolyCLEAN

٠

۲

*

•

洲

\$

Penalty-based prior (atomic norm)

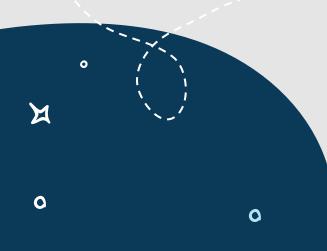
2. Atomic behavior

CLEAN-like algorithmic structure and minor cycles

3. Focus on scalability

A

Sparsity-informed computations with Pycsou and HVOX (nufft)



Penalty-based prior (atomic norm)

0

 $\lambda \| \mathbf{I} \|_1$, $\mathbf{I} \geqslant 0$

0

M

0

2. Atomic behavior

CLEAN-like algorithmic structure and minor cycles

3. Focus on scalability

A

Sparsity-informed computations with Pycsou and HVOX (nufft)

Penalty-based prior (atomic norm)

0

 $\lambda \|\mathbf{I}\|_1$, $\mathbf{I} \geqslant 0$

0

M

0

2. Atomic behavior

CLEAN-like algorithmic structure and minor cycles

A

3. Focus on scalability

Sparsity-informed computations with Pycsou and HVOX (nufft)

Penalty-based prior (atomic norm)

0

 $\lambda \|\mathbf{I}\|_1$, $\mathbf{I} \geqslant 0$

0

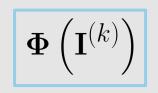
M

0

2. Atomic behavior

CLEAN-like algorithmic structure and minor cycles

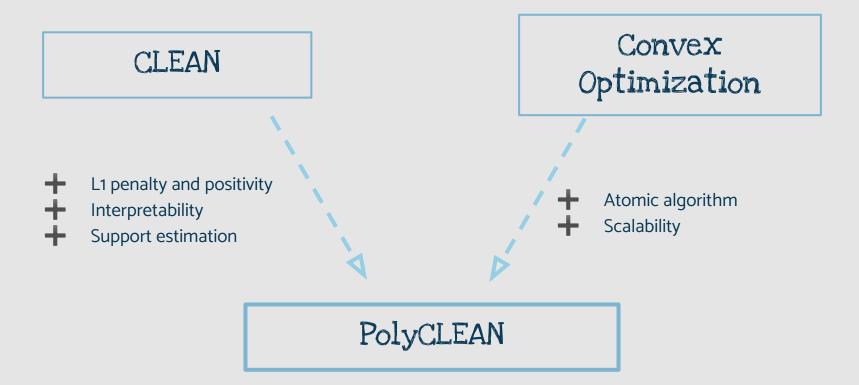
A



3. Focus on scalability

Sparsity-informed computations with Pycsou and HVOX (nufft)

The Landscape of Methods



Algorithm 1 PolyCLEAN

Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \, \mathcal{S}^{(0)} = \operatorname{Supp}(\mathbf{I}^{(0)}) = \emptyset, \, \, \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}$

۲

۲

×

۲

while stopping_criterion $(\mathbf{I}^{(k)})$ not reached do

1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$

end while

•

Algorithm 1 PolyCLEAN

Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \ \mathcal{S}^{(0)} = \operatorname{Supp}(\mathbf{I}^{(0)}) = \emptyset, \ \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}$

while stopping_criterion $(\mathbf{I}^{(k)})$ not reached do

- 1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$
- 2. Place many candidate sources: $s_1^{(k)}, s_2^{(k)}, \dots = \texttt{highest_level_set}(\mathbf{I}_R^{(k)})$ Update active set : $\mathcal{S}^{(k)} \leftarrow \mathcal{S}^{(k-1)} \cup \{s_1^{(k)}, s_2^{(k)}, \dots\}$

۲

×

۲

end while

Algorithm 1 PolyCLEAN

Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \ \mathcal{S}^{(0)} = \operatorname{Supp}(\mathbf{I}^{(0)}) = \emptyset, \ \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}$

while stopping_criterion $(\mathbf{I}^{(k)})$ not reached do

- 1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$
- 2. Place many candidate sources: $s_1^{(k)}, s_2^{(k)}, \dots = \texttt{highest_level_set}(\mathbf{I}_R^{(k)})$ Update active set : $\mathcal{S}^{(k)} \leftarrow \mathcal{S}^{(k-1)} \cup \{s_1^{(k)}, s_2^{(k)}, \dots\}$

3. Update the iterate:

$$\mathbf{I}^{(k)} = \underset{\substack{\operatorname{Supp}(\mathbf{I}) \subset \mathcal{S}^{(k)}\\\mathbf{I} \ge 0}}{\operatorname{arg\,min}} \frac{1}{2} \left\| \mathbf{V} - \mathbf{\Phi} \mathbf{I} \right\|_{2}^{2} + \lambda \left\| \mathbf{I} \right\|_{1}$$
(R)

۲

 \mathbf{A}

۲

end while

Algorithm 1 PolyCLEAN

Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \ \mathcal{S}^{(0)} = \operatorname{Supp}(\mathbf{I}^{(0)}) = \emptyset, \ \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}$

while stopping_criterion $(\mathbf{I}^{(k)})$ not reached do

- 1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$
- 2. Place many candidate sources: $s_1^{(k)}, s_2^{(k)}, \dots = \texttt{highest_level_set}(\mathbf{I}_R^{(k)})$ Update active set : $\mathcal{S}^{(k)} \leftarrow \mathcal{S}^{(k-1)} \cup \{s_1^{(k)}, s_2^{(k)}, \dots\}$
- 3. Update the iterate: (approximately)

$$\mathbf{I}^{(k)} = \underset{\substack{\operatorname{Supp}(\mathbf{I}) \subset \mathcal{S}^{(k)}\\\mathbf{I} \ge 0}}{\operatorname{arg\,min}} \frac{1}{2} \left\| \mathbf{V} - \mathbf{\Phi} \mathbf{I} \right\|_{2}^{2} + \lambda \left\| \mathbf{I} \right\|_{1}$$
(R)

۲

 \mathbf{A}

۲

end while

Support Identification

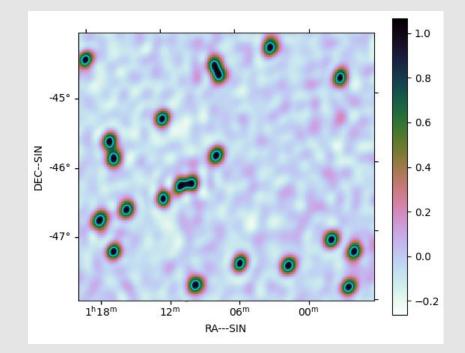
LASSO dual certificate:

$$\begin{cases} \boldsymbol{\eta} \in [-1,1]^N \\ \langle \boldsymbol{\eta}, \mathbf{I}^* \rangle = \|\mathbf{I}^*\|_1 \end{cases}$$

Support Identification



$$oldsymbol{\eta} = rac{1}{\lambda} oldsymbol{\Phi}^* \left(\mathbf{V} - oldsymbol{\Phi} \mathbf{I}^*
ight)$$



Extensions

• Extended Sources

• PolyCLEAN +

*

Extensions

• Extended Sources

Parametric expression of the sky image (dictionary, wavelets):

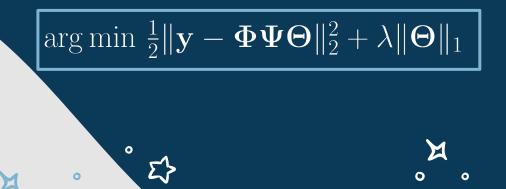
0

0

 $\mathbf{I}=\boldsymbol{\Psi}\boldsymbol{\Theta}$

• PolyCLEAN +

0



洲

42

Extensions

• Extended Sources

Parametric expression of the sky image (dictionary, wavelets):

0

0

0

0

 $\mathbf{I}=\boldsymbol{\Psi}\boldsymbol{\Theta}$

 $\arg\min \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}\mathbf{\Psi}\mathbf{\Theta}\|_2^2 + \lambda \|\mathbf{\Theta}\|_1$

PolyCLEAN +

0

0

Post-processing: Account for the shrinking of the LASSO with least squares reweighting

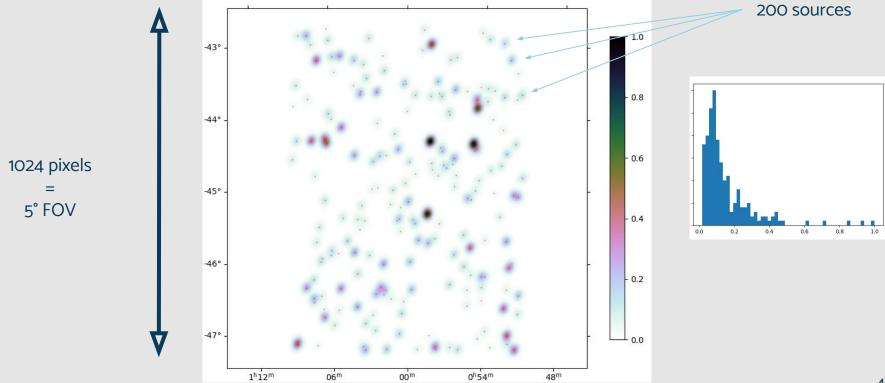
洲

43

$$\underset{\substack{\mathbf{I} \geqslant 0\\ \operatorname{Supp}(\mathbf{I}) \subset \operatorname{Supp}(\mathbf{I}^*)}{\operatorname{Supp}(\mathbf{I}^*)} \|\mathbf{V} - \mathbf{\Phi}\mathbf{I}\|_2^2$$

Simulations

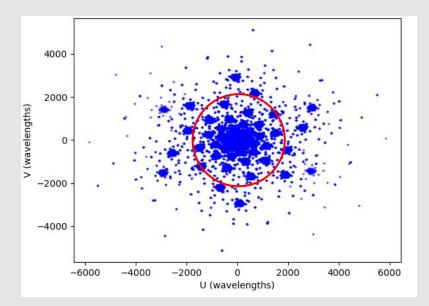
Point sources with sharp smoothing kernel



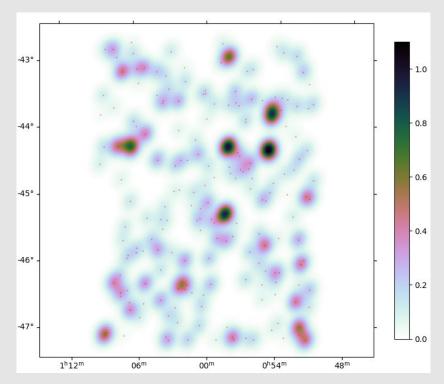
Simulations

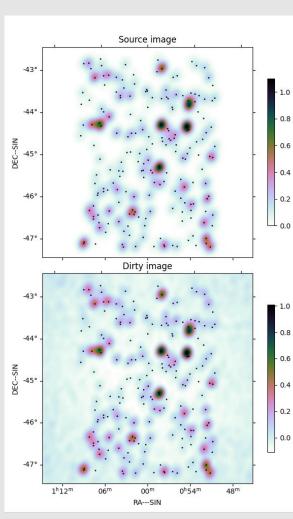
Number of baselines (SKA Low configuration):

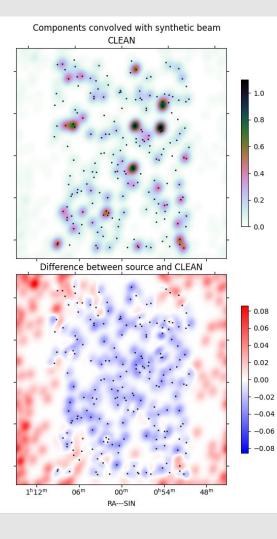
500m -> 18500

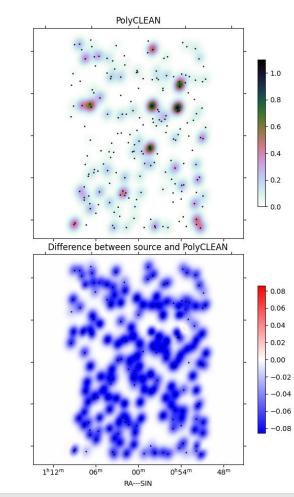


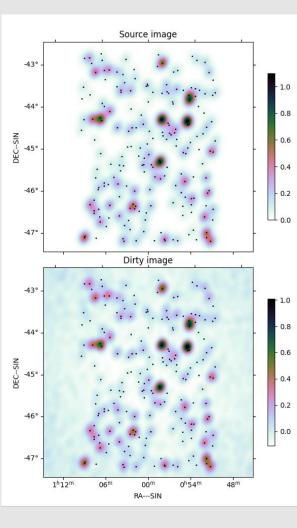
Sky image convolved with synthetic beam

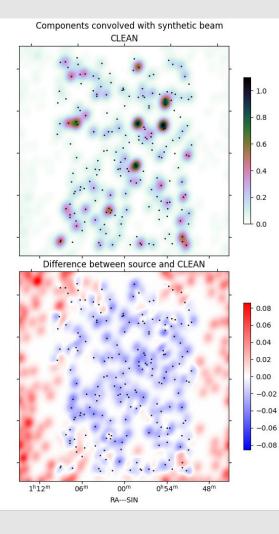


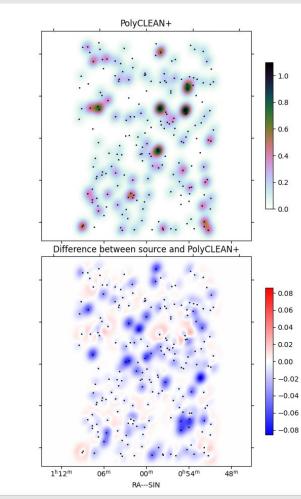




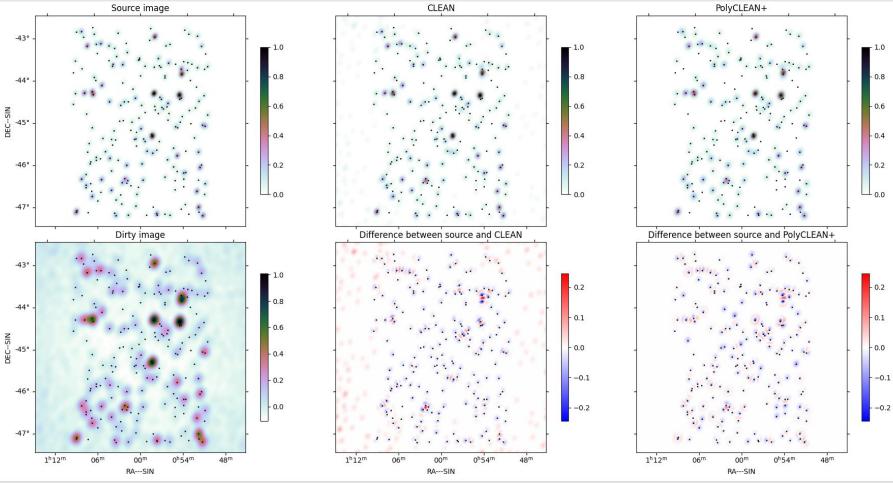




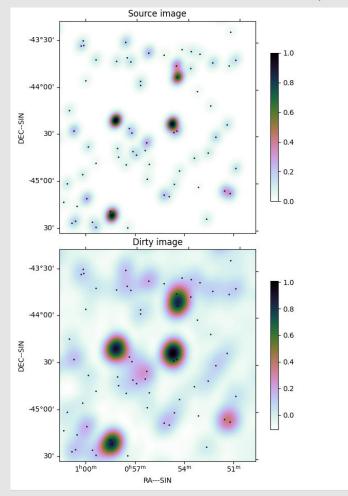


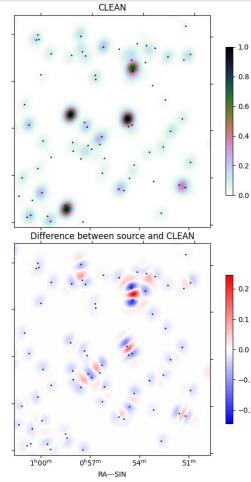


Components convolved with very sharp beam



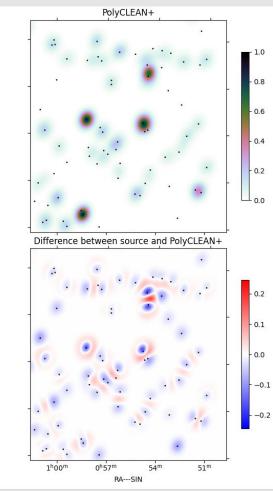
Components convolved with very sharp beam (zoom)





-0.1

-0.2



Reconstruction metrics

	$\mathrm{rmax} = 500~(\sim 18500~\mathrm{baselines})$				
	Dirty Image	CLEAN	Poly CLEAN	Poly CLEAN+	APGD
Duration (s)	-	11.2	17.3	19.3	38.7
MSE $(x10^{-4})$					
wide	252	7.14	38.2	2.66	35.3
synthetic	52.4	2.38	12.0	1.13	11.2
sharp	25.6	1.19	4.86	0.81	4.48
very sharp	42.3	1.27	3.02	1.11	2.76
components	92.2	0.13	0.09	0.09	0.09
Sparsity	-	486	~ 45000	~ 43500	~ 37000

Perspectives .

1. Real world datasets

- Many parameters
- A lot of flexibility for CLEAN as well as PolyCLEAN
- Difficult to simulate noise
- > Define an experimental setup

2. Extended sources

- Many possibilities:
 - Dictionary
 - Wavelets
- Few code required
 - Generic framework
 - Mostly done

3. Framework byproducts

• Analysis of the dual certificate

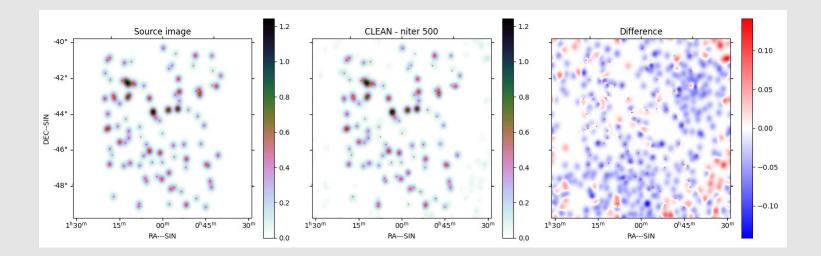
Bayesian tests

Thanks!

	CLEAN	MAP Estimation	PolyCLEAN
Sparse iterates	\checkmark	×	
Flexible priors	X	\checkmark	~
Fast solvers	\checkmark	~	
Calibration compliant	\checkmark	X	
Interpretable obj. function	X	\checkmark	\checkmark

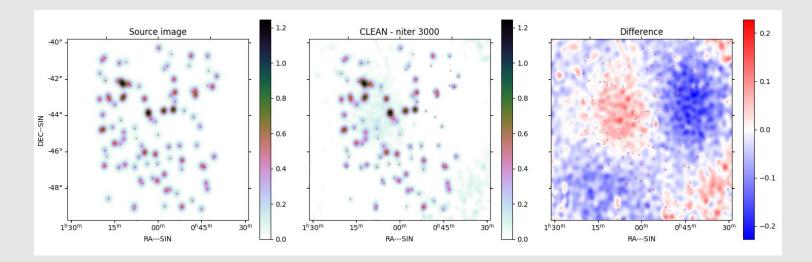
Sensibility of CLEAN w.r.t stop

Iterations	500	1000	2000	3000
Run time (s)	12.6	44.8	81.0	107.2
MSE (e-3)	0.6	1.1	2.7	3.7



Sensibility of CLEAN w.r.t stop

Iterations	500	1000	2000	3000
Run time (s)	12.6	44.8	81.0	107.2
MSE (e-3)	0.6	1.1	2.7	3.7

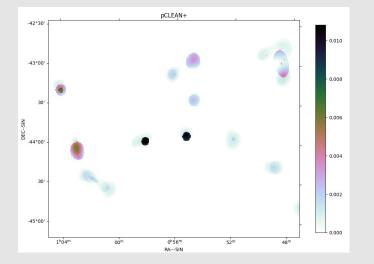


With the sizes of the data involved, LASSO solutions are not as sparse as CLEAN:

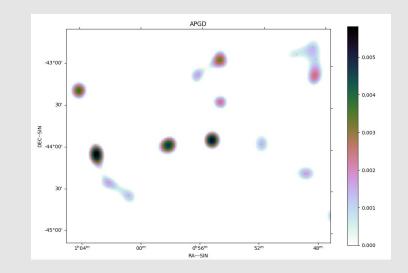
32k vs 1k PS

Workarounds:

- Higher lambda
- More precise stopping crit

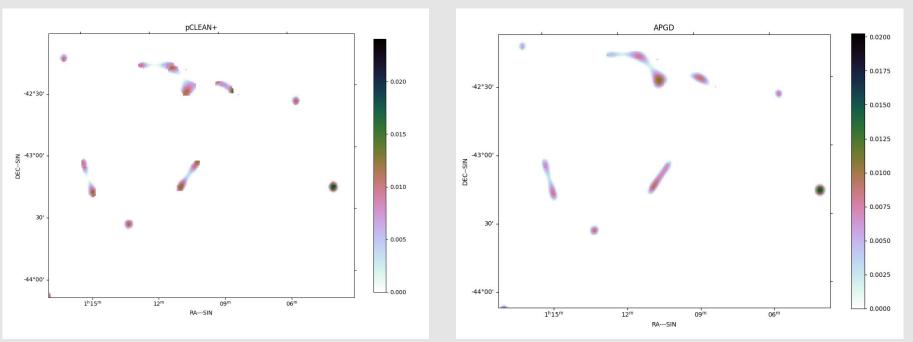


- Change the multi spikes strategy
- Gaussian dictionaries ?



More accuracy (so longer to run) [Poly

[PolyCLEAN+: 40s - APGD 179s - CLEAN: 24s]



The CLEAN-based Methods

• Astronomers

- Efficient methods
- Produce science content: End goal
- Small brick in a long pipeline

The Convex Optimisation Methods

- Signal processing community
- Principled and satisfying methods, but difficulties to reach the astronomers
 - Algorithms,
 - Complex methods,
 - Scalability,
 - Lack of trust on the images.