To Grid or Not To Grid

Atomic Methods for Sparse Inverse Problems

Adrian Jarret

under the direction of Prof. Martin Vetterli

co-supervision of Dr. Julien Fageot Dr. Matthieu Simeoni

June 12th, 2025

Atomic Methods for Sparse Inverse Problems

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

Deconvolution

Inpainting

Fourier sampling

Atomic Methods for Sparse Inverse Problems

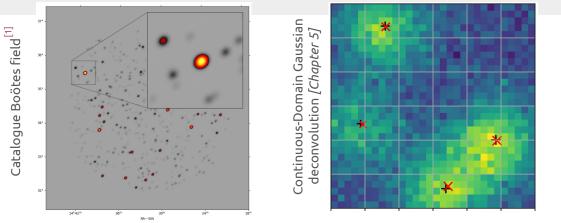
Super resolution

SMLM

$$\mathbf{y} = \mathbf{\Phi}(f) + \mathbf{n}$$

$$f: \mathbb{R}^d \to \mathbb{R}$$

Off-the-Grid



$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

 $\mathbf{y} = \mathbf{\Phi}(\mathbf{f}) + \mathbf{n}$

Atomic Methods for Sparse Inverse Problems

$$\mathbf{x}=$$

[1] Williams WL et al., "LOFAR 150-MHz observations of the Boötes field: catalogue and source counts.", Monthly Notices of the Royal Astronomical Society, 2016

$$\underset{\mathbf{x} \in \mathbb{R}^{N}}{\operatorname{arg \, min}} \ E(\mathbf{y}, \mathbf{A}\mathbf{x}) + \mathcal{R}(\mathbf{x})$$

$$\underset{\mathbf{m} \in \mathcal{M}(\mathbb{R}^{d})}{\operatorname{arg \, min}} \ E(\mathbf{y}, \mathbf{\Phi}(\mathbf{m})) + \mathcal{R}(\mathbf{m})$$

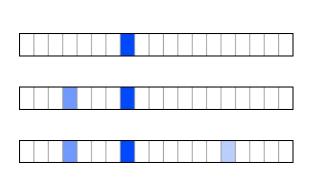
$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

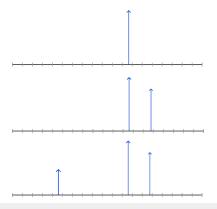
 $\mathbf{y} = \mathbf{\Phi}(\mathbf{f}) + \mathbf{n}$

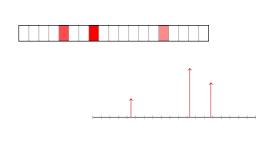
- → Compressed sensing theory
- → Representer theorems

Principled

Atomic Methods for Sparse Inverse Problems



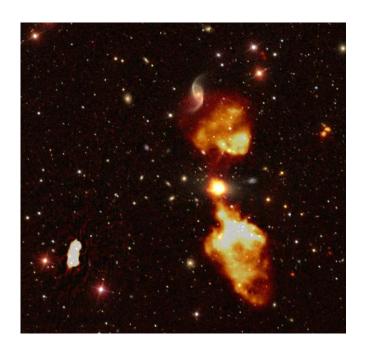




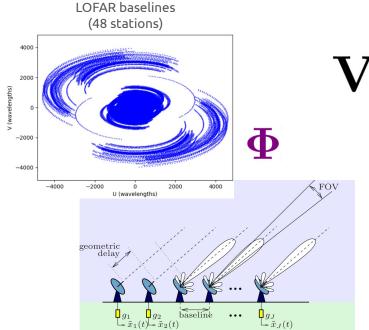
1. The PolyCLEAN Journey

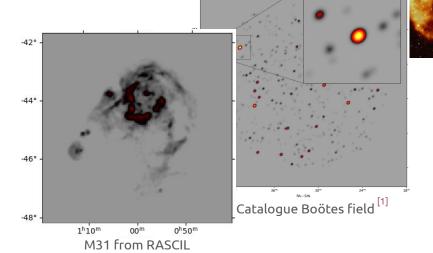
- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework
- 2. Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of CompositeSparse-plus-Smooth problems
- 3. Conclusion

Chapter 7



Radio Interferometric Imaging



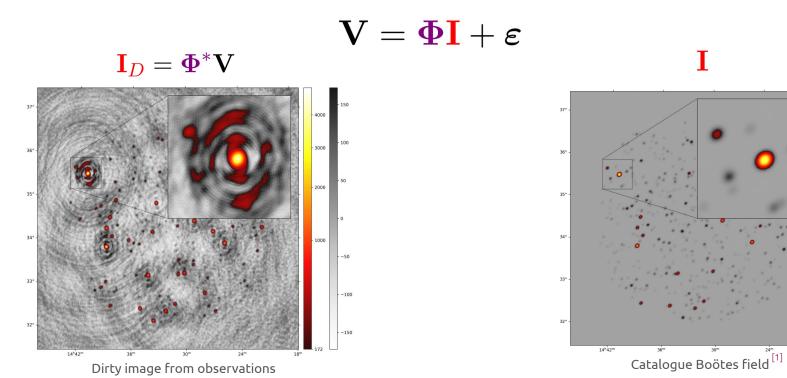


[1] Williams WL et al., "LOFAR 150-MHz observations of the Boötes field: catalogue and source counts.", Monthly Notices of the Royal Astronomical Society, 2016

[2] Van der Veen et al. "Signal Processing for Radio Astronomy", 2019

[Credits: C. Tasse and the LOFAR surveys team.]

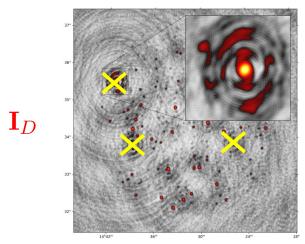
Radio Interferometric Imaging - Dirty Image



[1] Williams WL et al., "LOFAR 150-MHz observations of the Boötes field: catalogue and source counts.", Monthly Notices of the Royal Astronomical Society, 2016

Classical Approaches

The CLEAN family [3]



- Intuitive and simple method, long-developed and fast
- Sensitive to stop, objective function unclear, physically impossible artefacts

Optimization-based Methods[4]

$$\underset{\mathbf{I}\in\mathbb{R}^N}{\arg\min} \ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}\mathbf{I}\|_2^2 + \mathcal{R}(\mathbf{I})$$

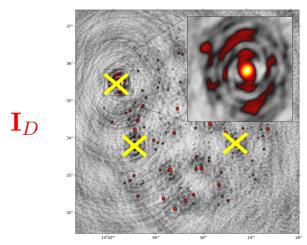
Controlled solutions, versatile priors, excellent results, additional tools

[3] Högbom JA., "Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines", Astronomy and Astrophysics Supplement Series, 1974.

[4] Wiaux Y. et al., "Compressed sensing imaging techniques for radio interferometry", Monthly Notices of the Royal Astronomical Society. 2009.

Classical Approaches

The CLEAN family [3]



- Intuitive and simple method, long-developed and fast
- Sensitive to stop, objective function unclear, physically impossible artefacts

[3] Högbom JA., "Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines", Astronomy and Astrophysics Supplement Series, 1974.

Optimization-based Methods[4]

$$\underset{\mathbf{I} \in \mathbb{R}^N}{\operatorname{arg\,min}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi} \mathbf{I}\|_2^2 + \lambda \|\mathbf{I}\|_1$$

LASSO

- Controlled solutions, versatile priors, excellent results, additional tools
- Numerically heavy, little adoption in the field

[4] Wiaux Y. et al., "Compressed sensing imaging techniques for radio interferometry", *Monthly Notices of the Royal Astronomical Society*. 2009.

1. The PolyCLEAN Journey

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework
- 2. Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of CompositeSparse-plus-Smooth problems
- 3. Conclusion

Chapter 3



The Vanilla Frank-Wolfe Algorithm

$$\underset{\mathbf{x} \in \mathcal{D}}{\arg\min} \ \mathcal{J}(\mathbf{x})$$

ullet $\mathcal J$: Convex, differentiable

 $m{\mathcal{D}}:$ Convex, bounded domain

Algorithm 1: Vanilla Frank-Wolfe algorithm [5]

Initialize
$$\mathbf{x}_0 \in \mathcal{D}$$
 for $k = 1, 2 \cdots d\mathbf{o}$

- Find an update direction: $\mathbf{s}_k \in \underset{\mathbf{s} \in \mathcal{D}}{\operatorname{arg \ min}} \ \mathcal{J}(\mathbf{x}_k) + \langle \nabla \mathcal{J}(\mathbf{x}_k), (\mathbf{s} \mathbf{x}_k) \rangle$
- 2.a) Step size: $\gamma_k \leftarrow 2/(k+2)$
- **2.**b) Reweight:

$$\mathbf{x}_k \leftarrow (1 - \gamma_k)\mathbf{x}_k + \gamma_k\mathbf{s}_k = \mathbf{x}_k + \gamma_k(\mathbf{s}_k - \mathbf{x}_k)$$

[5] Frank M, Wolfe P., "An algorithm for quadratic programming", Naval Research Logistics Quarterly, 1956.

The Vanilla Frank-Wolfe Algorithm

$$\underset{\mathbf{x} \in \mathcal{D}}{\arg\min} \ \mathcal{J}(\mathbf{x})$$

ullet $\mathcal J$: Convex, differentiable

● D : Convex

Algorithm 1: Vanilla Frank-Wolfe algorithm [5]

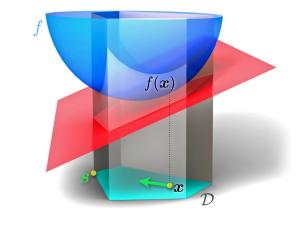
Initialize
$$\mathbf{x}_0 \in \mathcal{D}$$
 for $k = 1, 2 \cdots d\mathbf{o}$

1) Find an update direction:

$$\mathbf{s}_k \in \underset{\mathbf{s} \in \mathcal{D}}{\operatorname{arg min}} \ \mathcal{J}(\mathbf{x}_k) + \langle \nabla \mathcal{J}(\mathbf{x}_k), (\mathbf{s} - \mathbf{x}_k) \rangle$$

- 2.a) Step size: $\gamma_k \leftarrow 2/(k+2)$
- **2.**b) Reweight:

$$\mathbf{x}_k \leftarrow (1 - \gamma_k)\mathbf{x}_k + \gamma_k\mathbf{s}_k = \mathbf{x}_k + \gamma_k(\mathbf{s}_k - \mathbf{x}_k)$$



[5] Frank M, Wolfe P., "An algorithm for quadratic programming", Naval Research Logistics Quarterly, 1956.

The Vanilla Frank-Wolfe Algorithm

$$\underset{\mathbf{x} \in \mathcal{D}}{\arg\min} \ \mathcal{J}(\mathbf{x})$$

ullet $\mathcal J$: Convex, differentiable

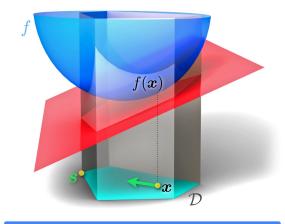
D : Convex

Algorithm 1: Vanilla Frank-Wolfe algorithm [5]

Initialize
$$\mathbf{x}_0 \in \mathcal{D}$$
 for $k = 1, 2 \cdots d\mathbf{o}$

- Find an update direction: $\mathbf{s}_k \in \underset{\mathbf{s} \in \mathcal{D}}{\operatorname{arg \ min}} \ \mathcal{J}(\mathbf{x}_k) + \langle \nabla \mathcal{J}(\mathbf{x}_k), (\mathbf{s} - \mathbf{x}_k) \rangle$
- 2.a) Step size: $\gamma_k \leftarrow 2/(k+2)$
- **2.b**) Reweight:

$$\mathbf{x}_k \leftarrow (1 - \gamma_k)\mathbf{x}_k + \gamma_k\mathbf{s}_k = \mathbf{x}_k + \gamma_k(\mathbf{s}_k - \mathbf{x}_k)$$



Convergence^[6]:

$$\mathcal{J}(\mathbf{x_k}) - \mathcal{J}^* = \mathcal{O}(1/k)$$

[5] Frank M, Wolfe P., "An algorithm for quadratic programming", Naval Research Logistics Quarterly, 1956.

[6] Jaggi M., "Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization", Proceedings of the 30th International Conference on Machine Learning, PMLR, 2013.

Frank-Wolfe for the LASSO

$$\underset{\mathbf{x} \in \mathbb{R}^N}{\arg\min} \ \mathcal{J}(\mathbf{x}) := \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Algorithm 2: Vanilla Frank-Wolfe algorithm

Initialize
$$\mathbf{x}_0 \in \mathcal{D}$$
 for $k = 1, 2 \cdots$ do

Canonical basis vector

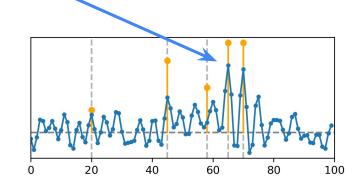
Find an update direction: $\mathbf{s}_k = \mathbf{e}_{i_k} \quad \text{with} \quad i_k = \underset{k \in \{1,...,N\}}{\text{arg max}} \ |\boldsymbol{\eta}_k|$

- 2.a) Step size: $\gamma_k \leftarrow 2/(k+2)$
- **2.**b) Reweight:

$$\mathbf{x}_k \leftarrow (1 - \gamma_k)\mathbf{x}_k + \gamma_k\mathbf{s}_k = \mathbf{x}_k + \gamma_k(\mathbf{s}_k - \mathbf{x}_k)$$

Empirical dual certificate

$$oldsymbol{\eta}_k = rac{1}{\lambda} \mathbf{A}^* \left(\mathbf{y} - \mathbf{A} \mathbf{x}_k
ight)$$



[7] Denoyelle Q et al. "The sliding Frank-Wolfe algorithm and its application to super-resolution microscopy", Inverse Problems, 2019.

[8] Harchaoui Z. et al., "Conditional gradient algorithms for machine learning", NIPS Workshop on Optimization for ML, 2013.

Our Polyatomic Frank-Wolfe Algorithm

$$\underset{\mathbf{x} \in \mathbb{R}^N}{\arg\min} \ \mathcal{J}(\mathbf{x}) := \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Algorithm 3: Polyatomic Frank-Wolfe algorithm of quality $\delta^{[9]}$

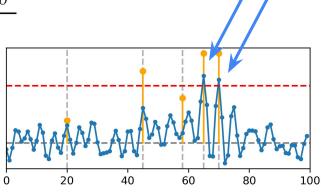
Initialize
$$\mathbf{x}_0 \in \mathcal{D}$$
, $\mathcal{S}_0 = \emptyset$ for $k = 1, 2 \cdots$ do

1) Find update directions:

$$\mathcal{I}_k \leftarrow \{1 \le j \le N : |\boldsymbol{\eta}_k[j]| \ge ||\boldsymbol{\eta}||_{\infty} - \delta/k\}$$
$$\mathcal{S}_k \leftarrow \mathcal{S}_{k-1} \cup \mathcal{I}_k$$

2) Reweight:

$$\mathbf{x}_k \leftarrow \underset{\mathbf{Supp}(\mathbf{x}) \subset \mathcal{S}_k}{\operatorname{arg \, min}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$



[9] Jarret A, Fageot J, Simeoni M. "A Fast and Scalable Polyatomic Frank-Wolfe Algorithm for the LASSO", IEEE Signal Processing Letters, 2022.

Our Polyatomic Frank-Wolfe Algorithm

$$\underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{arg \, min}} \ \mathcal{J}(\mathbf{x}) := \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Algorithm 3: Polyatomic Frank-Wolfe algorithm of quality $\delta^{[9]}$

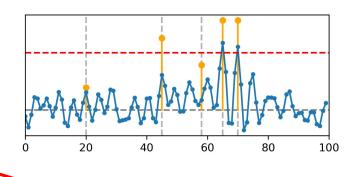
Initialize
$$\mathbf{x}_0 \in \mathcal{D}$$
, $\mathcal{S}_0 = \emptyset$ for $k = 1, 2 \cdots$ do

1) Find update directions:

$$\mathcal{I}_k \leftarrow \{1 \le j \le N : |\boldsymbol{\eta}_k[j]| \ge ||\boldsymbol{\eta}||_{\infty} - \delta/k\}$$
$$\mathcal{S}_k \leftarrow \mathcal{S}_{k-1} \cup \mathcal{I}_k$$

2) Reweight:

$$\mathbf{x}_k \leftarrow \underset{\mathbf{Supp}(\mathbf{x}) \subset \mathcal{S}_k}{\operatorname{arg\,min}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$



 $|\mathcal{S}_k| \ll N$

[9] Jarret A, Fageot J, Simeoni M. "A Fast and Scalable Polyatomic Frank-Wolfe Algorithm for the LASSO", IEEE Signal Processing Letters, 2022.

Benefits of Polyatomic Frank-Wolfe

Polyatomic

Fast

 $\mathcal{S}_k \leftarrow \mathcal{S}_{k-1} \cup \mathcal{I}_k$

- Sparse iterates
- → Scalable

 $\mathbf{x}_k = \sum_{i=1}^{N_k} \alpha_i^{[k]} \mathbf{e}_i^{[k]}$

Convergence

→ Principled

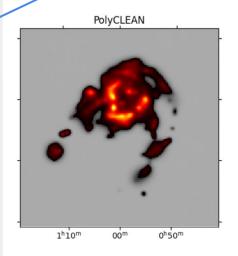
Theorem 3.2 (Convergence of Polyatomic FW). [9]

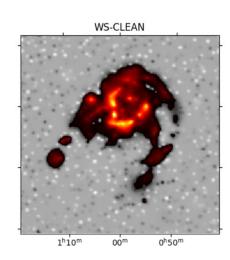
$$\mathcal{J}(\mathbf{x}_k) - \mathcal{J}^* \le \frac{2}{k+2} (C_f + 2\delta)$$

1. The PolyCLEAN Journey

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A Competitive Imaging Framework
- 2. Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of CompositeSparse-plus-Smooth problems
- 3. Conclusion

Chapter 8





What's in the name? "PolyCLEAN"

Algorithm 8.1: PolyCLEAN of quality $0 < \delta \le 1$

Initialize:
$$\mathbf{I}_0 \leftarrow 0, \mathcal{S}_0 \leftarrow \emptyset, \Delta \leftarrow (1 - \delta) \|\mathbf{\Phi}^* \mathbf{V}\|_{\infty}$$

for k = 0, 1, 2, ... do

Dirty residual: $\eta_k \leftarrow \Phi^* (V - \Phi(I_k))$

1.a. Polyatomic exploration:

$$\mathcal{I}_{k+1} = \{1 \le j \le N : |\eta_k|_j \ge \|\eta_k\|_{\infty} - 2\Delta/(k+2)\}$$

1.b. Update active indices:

$$S_{k+1} \leftarrow S_k \cup \mathcal{I}_{k+1}$$

2. Update active weights:

$$\mathbf{I}_{k+1} \leftarrow \underset{\text{Supp}(\mathbf{I}) \subset \mathcal{S}_{k+1}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{V} - \mathbf{\Phi} \mathbf{I} \|_{2}^{2} + \lambda \| \mathbf{I} \|_{1}$$

3. Prune atoms:

$$S_{k+1} \leftarrow \operatorname{Supp}(\mathbf{I}_{k+1})$$

4. Check convergence:

STOP if a stopping criterion is verified.

Output:

Postprocess $I^{(k)}$ (e.g., convolution with synthetic beam, add residual image)

$$\mathbf{V} = \mathbf{\Phi}\mathbf{I} + \boldsymbol{\varepsilon}$$

$$\underset{\mathbf{I} \in \mathbb{R}^N}{\operatorname{arg\,min}} \ \frac{1}{2} \|\mathbf{V} - \mathbf{\Phi}\mathbf{I}\|_2^2 + \lambda \|\mathbf{I}\|_1$$

Empirical dual certificate

What's in the name? "PolyCLEAN"

Algorithm 8.1: PolyCLEAN of quality $0 < \delta \le 1$

Initialize:
$$\mathbf{I}_0 \leftarrow 0, \mathcal{S}_0 \leftarrow \emptyset, \Delta \leftarrow (1 - \delta) \|\mathbf{\Phi}^* \mathbf{V}\|_{\infty}$$

for k = 0, 1, 2, ... do

$$\mathbf{V} = \mathbf{\Phi}\mathbf{I} + \boldsymbol{\varepsilon}$$

$$\operatorname*{arg\,min}_{\mathbf{I} \in \mathbb{R}^N} \ \frac{1}{2} \|\mathbf{V} - \mathbf{\Phi}\mathbf{I}\|_2^2 + \lambda \|\mathbf{I}\|_1$$

Empirical dual certificate

Dirty residual: $\eta_k \leftarrow \Phi^* (V - \Phi(I_k))$

1.a. Polyatomic exploration:

$$\mathcal{I}_{k+1} = \left\{1 \leq j \leq N : |\boldsymbol{\eta}_k|_j \geq \left\|\boldsymbol{\eta}_k\right\|_{\infty} - 2\Delta/(k+2)\right\}$$

1.b. Update active indices:

$$S_{k+1} \leftarrow S_k \cup \mathcal{I}_{k+1}$$

2. Update active weights:

$$\mathbf{I}_{k+1} \leftarrow \underset{\text{Supp}(\mathbf{I}) \subset \mathcal{S}_{k+1}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{V} - \mathbf{\Phi} \mathbf{I}\|_{2}^{2} + \lambda \|\mathbf{I}\|_{1}$$

3. Prune atoms:

$$S_{k+1} \leftarrow \operatorname{Supp}(\mathbf{I}_{k+1})$$

4. Check convergence:

STOP if a stopping criterion is verified.

Polyatomic
Frank-Wolfe

~ Major cycles of CLEAN

steps

Output:

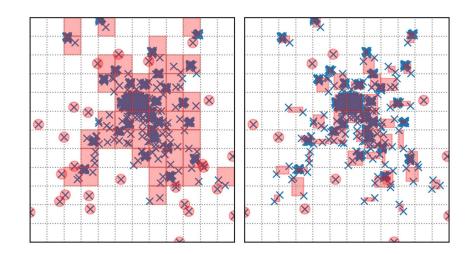
Postprocess $I^{(k)}$ (e.g., convolution with synthetic beam, add residual image)

Symbiosis with HVOX [10]

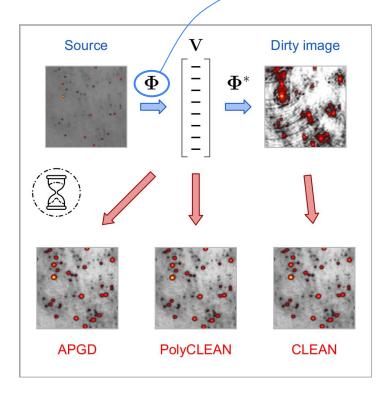
Sparsity-aware implementation of the forward operator:

$$\mathbf{V} = \mathbf{\Phi} \mathbf{I} + \mathbf{arepsilon}$$

NU Fourier sum:
$$V_\ell = \sum_{i,j} w_{i,j} \mathrm{e}^{-\langle \mathbf{x}_{i,j}, \mathbf{v}_\ell \rangle}$$

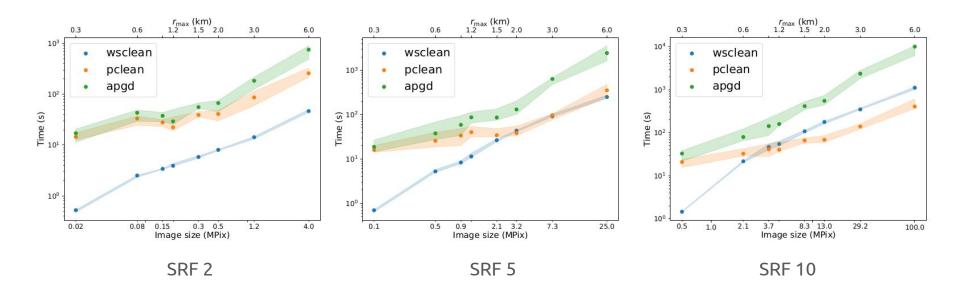


A Fast Reconstruction Method



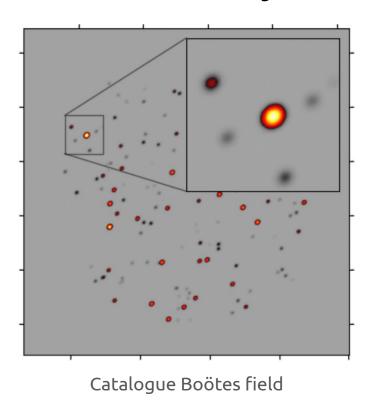
Varying number of baselines

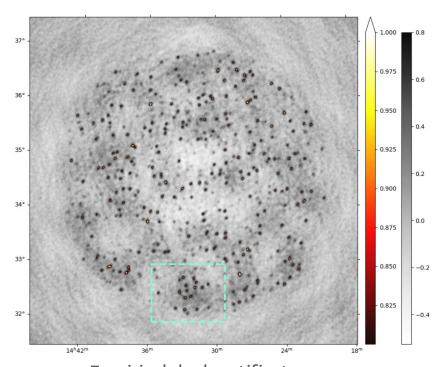
A Fast Reconstruction Method



Towards Uncertainty Estimation

$$\boxed{\boldsymbol{\eta^*} = \frac{1}{\lambda} \boldsymbol{\Phi^*} (\mathbf{V} - \boldsymbol{\Phi^{I^*}})}$$

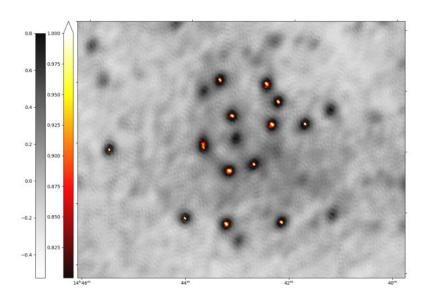




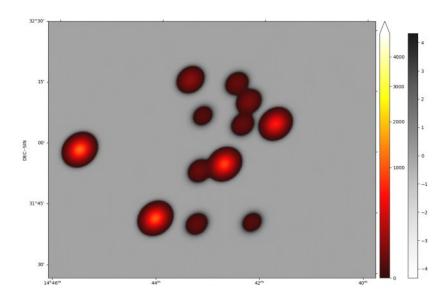
Empirical dual certificate

Towards Uncertainty Estimation

$$oxed{\eta^* = rac{1}{\lambda} \Phi^* (\mathbf{V} - \Phi \mathbf{I}^*)}$$



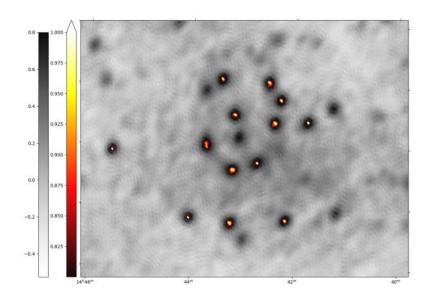
Dual certificate



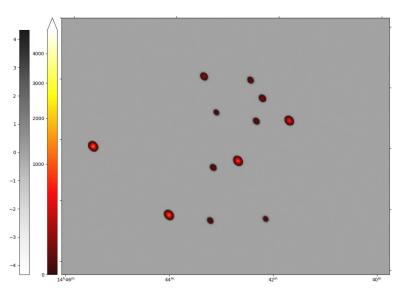
CLEAN reconstruction

Towards Uncertainty Estimation

$$\boxed{\boldsymbol{\eta}^* = \frac{1}{\lambda} \boldsymbol{\Phi}^* (\mathbf{V} - \boldsymbol{\Phi} \mathbf{I}^*)}$$



Dual certificate



Certificate-based representation

Summary

Design of optimization algorithm \rightarrow Real world application

Best of both worlds:

- Benefits of CLEAN → Atomic, fast
- Benefits of convex optimization → Accurate
- Sparsity-aware processing (HVOX) → Numerical efficiency
- Question of resolution
 - → CLEAN beam is too coarse, certificate beam is data-inspired

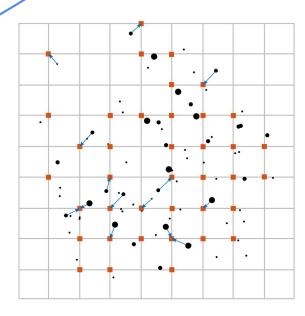
1. The PolyCLEAN Journey

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework

2. Reconstruction beyond the Grid

- a. Another Polyatomic Approach
- b. Decoupling of CompositeSparse-plus-Smooth problems
- 3. Conclusion

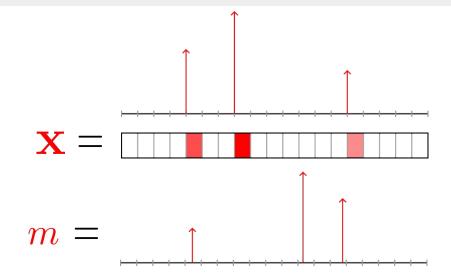
Chapter 4



The B-LASSO Problem

$$y = Ax + n$$

$$\mathbf{y} = \mathbf{\Phi}(\mathbf{m}) + \mathbf{n}$$



$$\underset{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(\boldsymbol{m})\|_{2}^{2} + \lambda \|\boldsymbol{m}\|_{\mathcal{M}}$$

$$||m||_{\mathcal{M}} = \sup_{\varphi \in \mathcal{C}_0(\mathcal{X}), ||\varphi||_{\infty} = 1} \langle m, \varphi \rangle$$

[12] Bredies K, Pikkarainen HK. "Inverse problems in spaces of measures", ESAIM: COCV, 2013.

The B-LASSO Problem

$$\underset{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(\boldsymbol{m})\|_{2}^{2} + \lambda \|\boldsymbol{m}\|_{\mathcal{M}}$$

Representer theorem^[13]:

$$\mathbf{m}^* = m[\mathbf{a}, \mathbf{x}] = \sum_i a_i \delta_{x_i}$$

$$\mathbf{a} \in \mathbb{R}^K, \mathbf{x} \in \mathcal{X}^K$$
 $K \leq L$

LASSO counterpart:

$$||m[\mathbf{a}, \mathbf{x}]||_{\mathcal{M}} = ||\mathbf{a}||_1$$

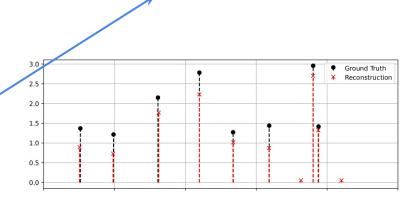
[12] Bredies K, Pikkarainen HK. "Inverse problems in spaces of measures", ESAIM: COCV, 2013.

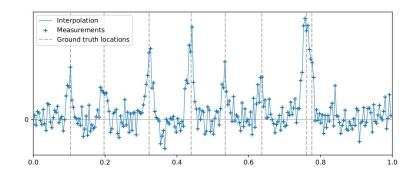
[13] Unser M. "A Unifying Representer Theorem for Inverse Problems and Machine Learning", Foundations of Computational Mathematics, 2020.

1. The PolyCLEAN Journey

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework
- Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of Composite
 Sparse-plus-Smooth problems
- 3. Conclusion

Chapter 5





Our Polyatomic Algorithm (once again)

Algorithm 5.4: Polyatomic Frank-Wolfe Algorithm for the B-LASSO

Initialize:
$$m_0 \leftarrow 0_{\mathcal{M}(\mathcal{X})}$$
, $\mathcal{S}_0 \leftarrow \emptyset$

for
$$k = 1, 2, ...$$
 do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) Candidate search:

$$\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus \mathcal{I}_k$$

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

3) (Optional) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_2^2 + \lambda \|\mathbf{a}\|_1$$

with initialization ($\mathbf{a}_{k-1/2}$, $\mathbf{x}_{k-1/2}$).

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

Our Polyatomic Algorithm (once again)

Polyatomic step

Algorithm 5.4: Polyatomic Frank-Wolfe Algorithm for the B-LASSO

Initialize:
$$m_0 \leftarrow 0_{\mathcal{M}(\mathcal{X})}, \ \mathcal{S}_0 \leftarrow \emptyset$$

for
$$k = 1, 2, ...$$
 do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

Critical step!

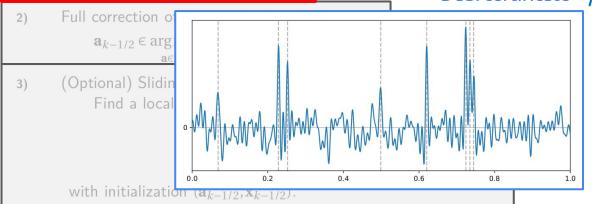
1.a) Candidate search:

$$\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus \mathcal{I}_k$$

Dual certificate η_0



Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

Our Polyatomic Algorithm (once again)

Polyatomic step

Same full correction

Algorithm 5.4: Polyatomic Frank-Wolfe Algorithm for the B-LASSO

Initialize:
$$m_0 \leftarrow 0_{\mathcal{M}(\mathcal{X})}, \ \mathcal{S}_0 \leftarrow \emptyset$$

for
$$k = 1, 2, ...$$
 do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) Candidate search:

$$\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus \mathcal{I}_k$$

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

(Optional) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{arg min}} \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

with initialization $(\mathbf{a}_{k-1/2}, \mathbf{x}_{k-1/2})$.

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

Our Polyatomic Algorithm (once again)

Polyatomic step

Same full correction

Optional sliding

Algorithm 5.4: Polyatomic Frank-Wolfe Algorithm for the B-LASSO

Initialize:
$$m_0 \leftarrow 0_{\mathcal{M}(\mathcal{X})}$$
, $\mathcal{S}_0 \leftarrow \emptyset$

for
$$k = 1, 2, ...$$
 do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) Candidate search:

$$\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus \mathcal{I}_k$$

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

3) (Optional) Sliding step:

Find a local minimum of the problem

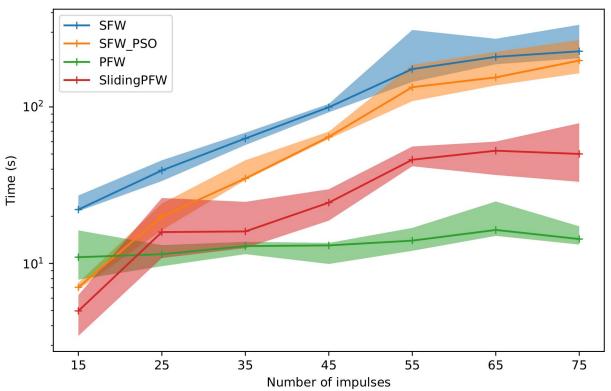
$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_2^2 + \lambda \|\mathbf{a}\|_1$$

with initialization ($\mathbf{a}_{k-1/2}$, $\mathbf{x}_{k-1/2}$).

Prune the active set:

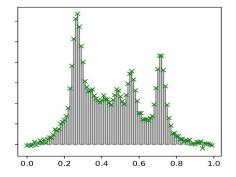
$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

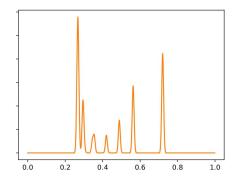
Promising Results

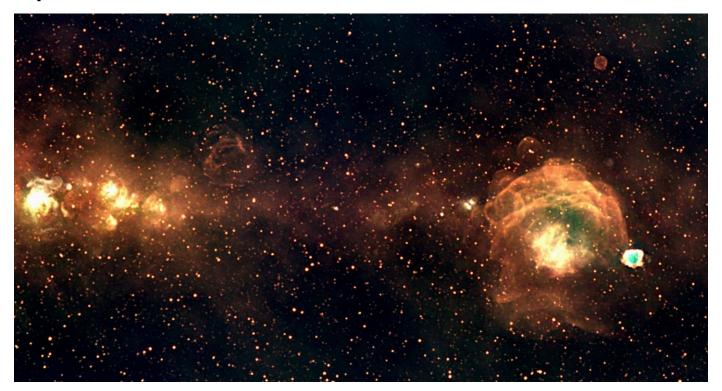


[X] Jarret A. et al., Article in preparation.

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework
- Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of Composite Sparse-plus-Smooth problems
- 3. Conclusion

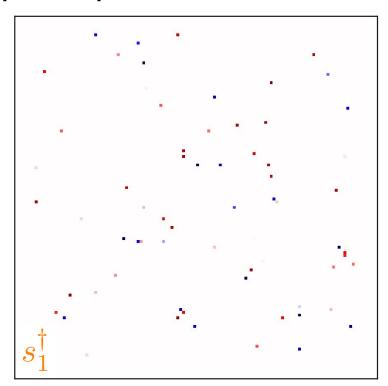


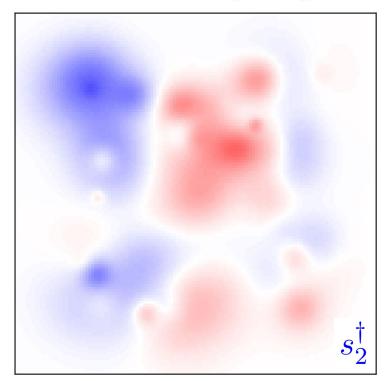




GLEAM survey of the radio sky, J2000 coordinates (9h37min15.21s, 50°25'03.1")

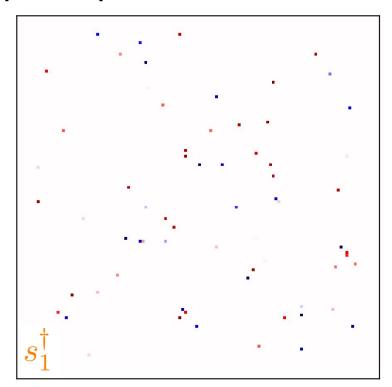
$$s_1^\dagger + s_2^\dagger$$

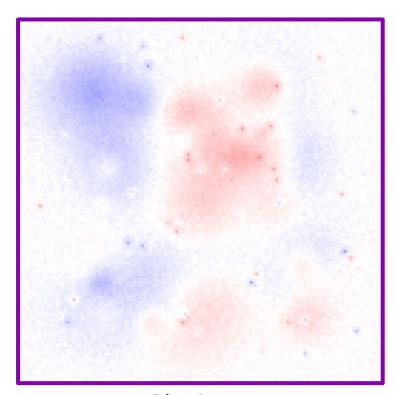




Sparse foreground

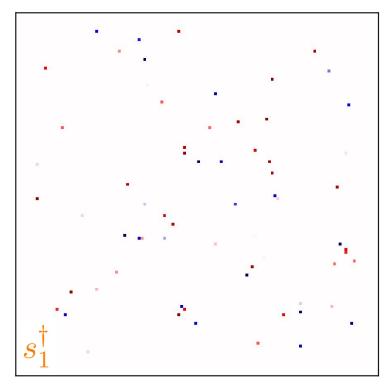
Smooth background

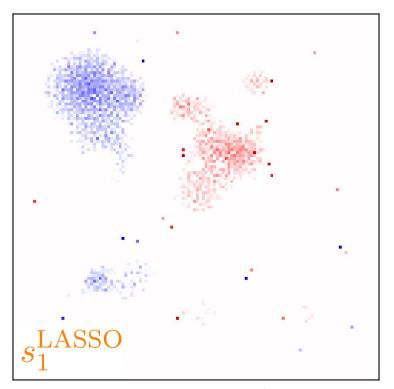




Sparse foreground

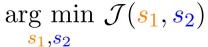
Dirty Image

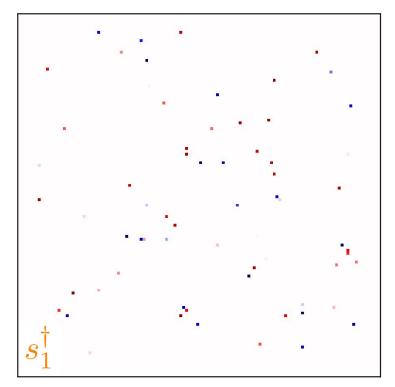


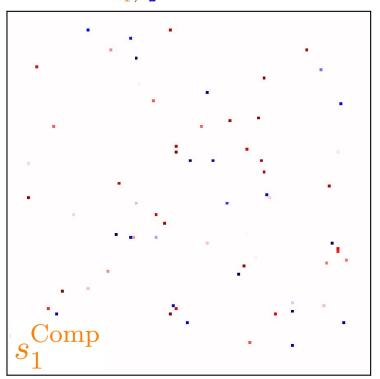


Sparse foreground

LASSO reconstruction







Sparse foreground

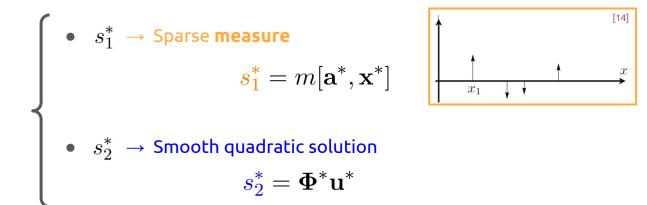
Composite model

Composite Representer Theorem (in the literature)

$$\underset{s_{1}, s_{2} \in \mathcal{M}(\mathcal{X}) \times L_{2}(\mathcal{X})}{\arg \min} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(s_{1} + s_{2})\|_{2}^{2} + \lambda_{1} \|s_{1}\|_{\mathcal{M}} + \frac{\lambda_{2}}{2} \|s_{2}\|_{L_{2}}^{2}$$

Representer theorem [13]:

$$s_1^* = m[\mathbf{a}^*, \mathbf{x}^*]$$



$$s_2^* = \mathbf{\Phi}^* \mathbf{u}^*$$

[13] Debarre T et al."Continuous-Domain Formulation of Inverse Problems for Composite Sparse-Plus-Smooth Signals". IEEE Open Journal of Signal Processing, 2021.

[14] Unser M et al., "Splines Are Universal Solutions of Linear Inverse Problems with Generalized TV Regularization", SIAM Review, 2017.

Our Composite Representer Theorem

$$\underset{s_1, s_2 \in \mathcal{M}(\mathcal{X}) \times L_2(\mathcal{X})}{\arg \min} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(s_1 + s_2)\|_2^2 + \lambda_1 \|\mathbf{s}_1\|_{\mathcal{M}} + \frac{\lambda_2}{2} \|\mathbf{s}_2\|_{L_2}^2$$

Our Representer Theorem

[Theorem 6.1]

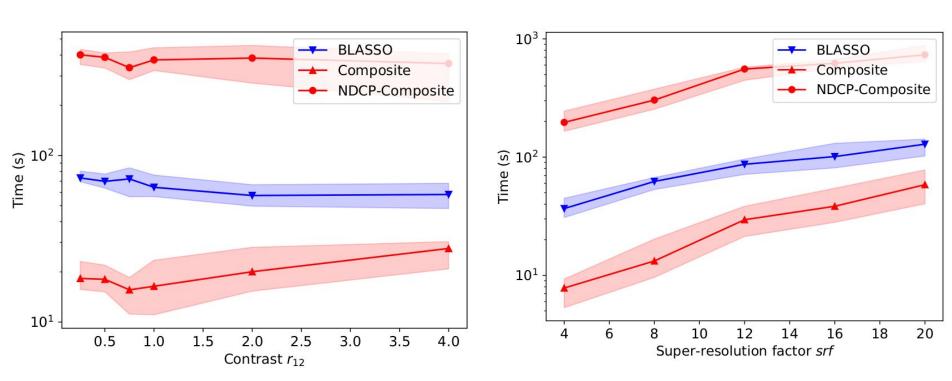
$$\begin{cases} \widehat{s_1} \in \arg\min_{s_1 \in \mathcal{B}} \ \frac{1}{2} \|\mathbf{M}_{\lambda_2}^{-\frac{1}{2}} \left(\mathbf{y} - \mathbf{\Phi}(s_1)\right)\|_2^2 + \lambda_1 \|s_1\|_{\mathcal{B}} \\ \\ \widehat{s}_2 = \frac{1}{\lambda_2} \mathbf{\Phi}^* \mathbf{M}_{\lambda_2}^{-1} \left(\mathbf{y} - \mathbf{w}\right) \end{cases}$$

Consequences:

- → Decoupled reconstruction procedure
- → Scaling of regularization parameters

Advantages of a Decoupled Approach

$$r_{1/2} = \frac{\|\mathbf{\Phi}(s_1^{\dagger})\|_2}{\|\mathbf{\Phi}(s_2^{\dagger})\|_2}$$



- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework

2. Reconstruction beyond the Grid

- a. Another Polyatomic Approach
- b. Decoupling of CompositeSparse-plus-Smooth problems

3. Conclusion

Conclusion and perspectives

Mathematics-aware numerical solvers:

- Principled (poly)atomic methods
- Decoupled algorithms
- Sparsity-aware processing

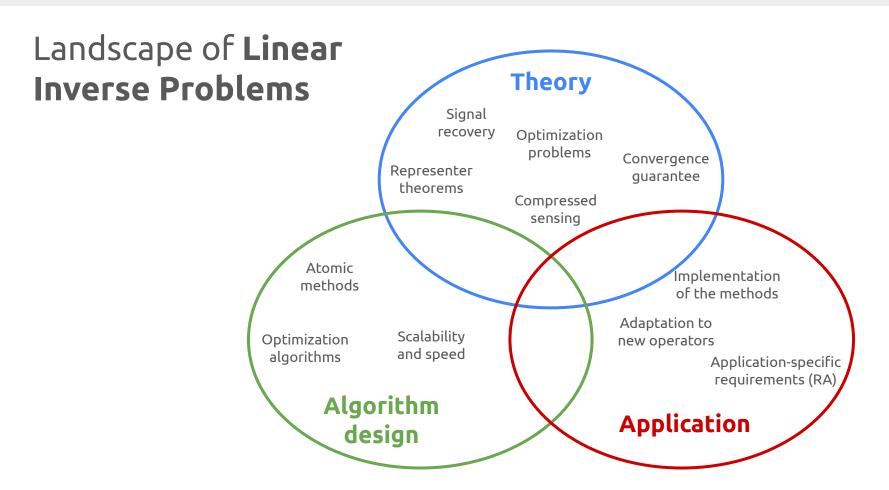
Chapters 3, 5

Chapter 6

Chapter 8

Open questions:

- Resolution of the reconstruction and quantitative imaging
- More advanced traditional methods
- Mixed learning-based approaches



Contributions

[Chapter 3]

Part I

Polyatomic Frank-Wolfe for the LASSO

Jarret A, Fageot J, Simeoni M,

"A Fast and Scalable Polyatomic Frank-Wolfe Algorithm for the LASSO", *IEEE Signal Processing Letters*, 2022.

+ GRETSI 2022

Part II

[Chapter 6]

Decoupling of Composite Sparse-plus-Smooth problems

Jarret A, Fageot J,

"Decoupled Solution for Composite Sparse-plus-Smooth Inverse Problems", Submitted in June 2025.

Jarret A, Costa V, Fageot J,

"A Decoupled Approach for Composite Sparse-Plus-Smooth Penalized Optimization", Proceeding of EUSIPCO 2024. [Chapter 5]

Part II

Polyatomic Continuous-Domain Reconstruction

Jarret A, Rochinha-Chaves D, Denoyelle Q, Vetterli M, *Article in preparation.*

[Chapter 8]

Part III

Radio Interferometric Imaging with PolyCLEAN

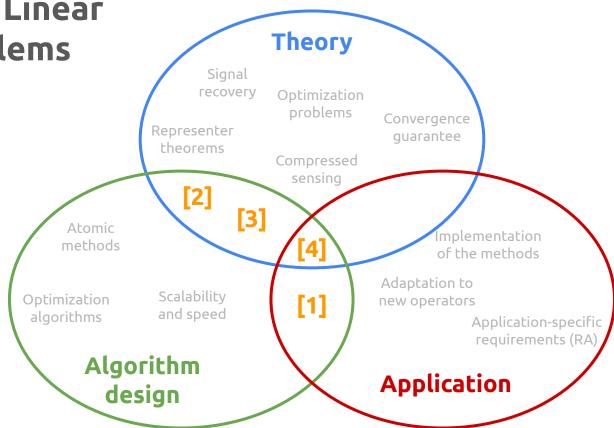
Jarret A, Kashani S, Rué-Queralt J, Hurley P, Fageot J, Simeoni M, "PolyCLEAN: Atomic optimization for super-resolution imaging and uncertainty estimation in radio interferometry", Astronomy and Astrophysics, 2025

[1] PFW

[2] CD-PFW

[3] Composite

[4] PolyCLEAN



Thank you!

Advisors and collaborators:

Martin Vetterli

Julien Fageot

Matthieu Simeoni

Paul Hurley

Sepand Kashani

Quentin Denoyelle

David Rochinha-Chaves

Valérie Costa

Labmates (past and present):

LCAV - IVRL - Center for Imaging

Supplementary slides

Penalized Optimization

Discrete problems

$$\underset{\mathbf{x} \in \mathbb{R}^{N}}{\operatorname{arg\,min}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \mathcal{R}(\mathbf{x})$$
Data-fidelity

LASSO
$$^{{}_{^{[1]}}}$$
 $\mathcal{R}(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$

Continuous-domain problems

$$\underset{\boldsymbol{f} \in \mathcal{M}(\mathbb{R}^d)}{\operatorname{arg\,min}} \ \frac{1}{2} \|\mathbf{y} - \boldsymbol{\Phi}(\boldsymbol{f})\|_2^2 + \mathcal{R}(\boldsymbol{f})$$
Data-fidelity

B-LASSO
$$^{\scriptscriptstyle{[2]}}$$
 $\mathcal{R}(f) = \lambda \|f\|_{\mathcal{M}}$

[1] Tibshirani R. "Regression Shrinkage and Selection via the Lasso", Journal of the Royal Statistical Society Series B (Methodological), 1996.

[2] Bredies K, Pikkarainen HK. "Inverse problems in spaces of measures", ESAIM: COCV, 2013.

2. Regularized Optimization (continued)

Representer theorem: [3]

$$\mathbf{x}^* = \sum_{i=1}^L a_i \mathbf{e}_i$$
 f^*

Benefits of the optimization approach:

- Implicit model
- Decorrelate methodology and implementation
- Versatility

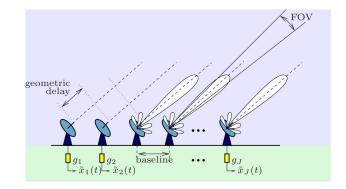
- Understandability (objective function)
- Principled: exact reconstruction in low noise regime
- Bayesian interpretation

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework

2. Reconstruction beyond the Grid

- a. Another Polyatomic Approach
- b. Decoupling of CompositeSparse-plus-Smooth problems
- 3. Conclusion

Inverse problem in radio astronomy



Noisy measurements

$$\mathbf{V} = \mathbf{\Phi}\mathbf{I} + \boldsymbol{\varepsilon}$$

• Ill-posed problem

$$Null(\mathbf{\Phi}) \neq \{0\}$$

• Huge volumes of data

Conventional solving methods

- The CLEAN family:
- Simple and accelerated -> fastMany variants:
 - MS-CLEAN, MFS-CLEAN, ...
- Long term standard
- Calibration
- Sensitive to stopNo denoising
 - Objective function unclear
 - Physically impossible artefacts

- The optimization methods:
- Principled and controlled solutions
- Optimization solvers
- Versatile priors
 - Uncertainty quantification
- Active field
- Improved results
- Potentially slow to converge
 Numerically heavy
 - Little adoption in the field

The PolyCLEAN framework

PolyCLEAN

- 1. LASSO
- 2. Polyatomic FW
- 3. HVOX forward operator

Benefits:

- Fast and scalable
- Accuracy of optimization methods
- Dual certificate image

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework
- Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of CompositeSparse-plus-Smooth problems
- 3. Conclusion

Simulations

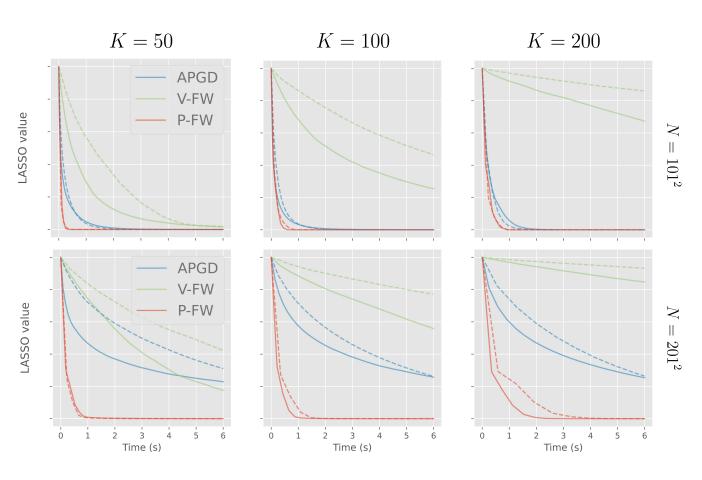
Simulated LASSO problem:

$$\mathbf{A} \in \mathbb{R}^{L \times K}$$

$$\mathbf{y} \in \mathbb{R}^{L}$$

$$L = 8K \text{ or } 16K$$

- Benefits:
 - Faster
 - Dependency on K



61

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A Competitive Imaging Framework
- Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of CompositeSparse-plus-Smooth problems
- 3. Conclusion

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework

2. Reconstruction beyond the Grid

- a. Another Polyatomic Approach
- b. Decoupling of Composite
 Sparse-plus-Smooth problems
- 3. Conclusion

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework
- Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of CompositeSparse-plus-Smooth problems
- 3. Conclusion

The B-LASSO for Sparse Continuous-Domain Recovery

$$\arg\min_{m \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(m)\|_{2}^{2} + \lambda \|m\|_{\mathcal{M}}$$

$$\mathcal{A} = (\mathcal{C}_{0}(\mathcal{X}), \|\cdot\|_{\infty})$$

$$\mathcal{M}(\mathcal{X}) = \mathcal{B} = \mathcal{A}'$$

$$\|m\|_{\mathcal{M}} = \sup_{\varphi \in \mathcal{C}_{0}(\mathcal{X}), \|\varphi\|_{\infty} = 1} \langle m, \varphi \rangle = \|m\|_{*}$$

 $\mathcal{X} = \mathbb{R}^d$

 $\mathcal{X} = \mathbb{T}^d$

$$m[\mathbf{a}, \mathbf{x}] = \sum_{i} a_i \delta_{x_i}, \quad \mathbf{a} \in \mathbb{R}^K, \mathbf{x} \in \mathcal{X}^K, \quad \|m[\mathbf{a}, \mathbf{x}]\|_{\mathcal{M}} = \|\mathbf{a}\|_1$$

[3] Unser M. "A Unifying Representer Theorem for Inverse Problems and Machine Learning", Foundations of Computational Mathematics, 2020.

The Sliding Frank-Wolfe Algorithm

Algorithm 5.3: Sliding Frank-Wolfe for the B-LASSO

Initialize:
$$\mathbf{a}_0 \leftarrow [], \mathbf{x}_0 \leftarrow []$$

$$m_k = m[\mathbf{a}_k, \mathbf{x}_k]$$

for k = 1, 2, ... do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) New impulse location:

$$x_k \in \operatorname{arg\,max}_{x \in \mathcal{X}} |\eta_{k-1}(x)|$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus x_k$$

// Concatenation

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

3) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_2^2 + \lambda \|\mathbf{a}\|_1$$

with initialization ($\mathbf{a}_{k-1/2}, \mathbf{x}_{k-1/2}$).

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

[5] Denoyelle Q et al. "The sliding Frank-Wolfe algorithm and its application to super-resolution microscopy", Inverse Problems, 2019.

The Sliding Frank-Wolfe Algorithm

Algorithm 5.3: Sliding Frank-Wolfe for the B-LASSO

Initialize:
$$\mathbf{a}_0 \leftarrow [], \mathbf{x}_0 \leftarrow []$$

$$|m_k = m[\mathbf{a}_k, \mathbf{x}_k]$$

for
$$k = 1, 2, ...$$
 do

Empirical dual certificate:
$$\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$$

- 1.a) New impulse location:
 - $x_k \in \operatorname{arg\,max}_{x \in \mathcal{X}} |\eta_{k-1}(x)|$
- **1.b)** Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus x_k$$

// Concatenation

67

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{D}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_{2}^{2} + \lambda \|\mathbf{a}\|_{1}$$

3) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_2^2 + \lambda \|\mathbf{a}\|_1$$

with initialization ($\mathbf{a}_{k-1/2}$, $\mathbf{x}_{k-1/2}$).

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

[5] Denoyelle Q et al. "The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy", Inverse Problems, 2019.

The Sliding Frank-Wolfe Algorithm

"Fully-Corrective Continuous-Domain Frank-Wolfe algorithm"

Convergence:

$$P(m_k) - P^* = \mathcal{O}(1/k)$$

Algorithm 5.3: Sliding Frank-Wolfe for the B-LASSO

Initialize:
$$\mathbf{a}_0 \leftarrow [], \ \mathbf{x}_0 \leftarrow []$$
 for $k=1,2,\ldots$ do

Empirical dual certificate:
$$\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$$

- 1.a) New impulse location:
 - $x_k \in \operatorname{arg\,max}_{x \in \mathcal{X}} |\eta_{k-1}(x)|$
- 1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus x_k$$

// Concatenation

68

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

3) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_2^2 + \lambda \|\mathbf{a}\|_1$$

with initialization ($\mathbf{a}_{k-1/2}$, $\mathbf{x}_{k-1/2}$).

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

The Sliding Frank-Wolfe Algorithm

- Finite steps exact convergence (under mild assumptions)
- Computationally heavy steps (candidate search and sliding)

Algorithm 5.3: Sliding Frank-Wolfe for the B-LASSO

Initialize:
$$\mathbf{a}_0 \leftarrow [], \mathbf{x}_0 \leftarrow []$$

 $|m_k = m[\mathbf{a}_k, \mathbf{x}_k]|$

for k = 1, 2, ... do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) New impulse location:

 $x_k \in \operatorname{arg\,max}_{x \in \mathcal{X}} |\eta_{k-1}(x)|$

1.b) Update active locations:

 $\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus x_k$

// Concatenation

69

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

3) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_2^2 + \lambda \|\mathbf{a}\|_1$$

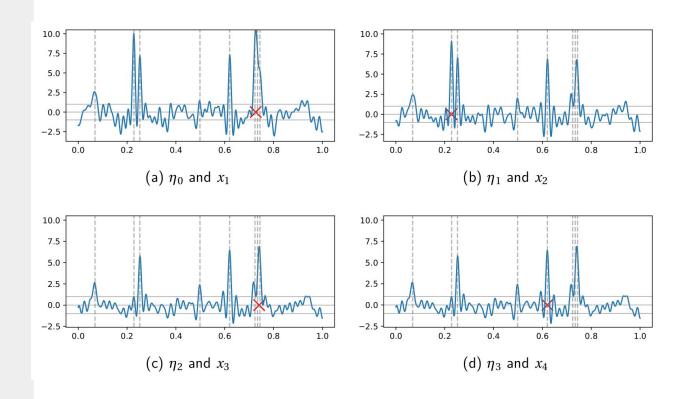
with initialization ($\mathbf{a}_{k-1/2}, \mathbf{x}_{k-1/2}$).

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

^[5] Denoyelle Q et al. "The sliding Frank-Wolfe algorithm and its application to super-resolution microscopy", Inverse Problems, 2019.

The Sliding Frank-Wolfe Algorithm



Our Polyatomic Algorithm (once again)

Algorithm 5.4: Polyatomic Frank-Wolfe Algorithm for the B-LASSO

Initialize:
$$m_0 \leftarrow 0_{\mathcal{M}(\mathcal{X})}$$
, $\mathcal{S}_0 \leftarrow \emptyset$

for k = 1, 2, ... do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) Candidate search:

$$\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus \mathcal{I}_k$$
 // Concatenation

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

3) (Optional) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_2^2 + \lambda \|\mathbf{a}\|_1$$

with initialization ($\mathbf{a}_{k-1/2}$, $\mathbf{x}_{k-1/2}$).

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

Our Polyatomic Algorithm (once again)

Polyatomic step

Algorithm 5.4: Polyatomic Frank-Wolfe Algorithm for the B-LASSO

Initialize:
$$m_0 \leftarrow 0_{\mathcal{M}(\mathcal{X})}$$
, $\mathcal{S}_0 \leftarrow \emptyset$

for
$$k = 1, 2, ...$$
 do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) Candidate search:

$$\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus \mathcal{I}_k$$

// Concatenation

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_{2}^{2} + \lambda \|\mathbf{a}\|_{1}$$

3) (Optional) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

with initialization $(\mathbf{a}_{k-1/2}, \mathbf{x}_{k-1/2})$.

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

Our Polyatomic Algorithm (once again)

Polyatomic step

Same full correction

Algorithm 5.4: Polyatomic Frank-Wolfe Algorithm for the B-LASSO

Initialize:
$$m_0 \leftarrow 0_{\mathcal{M}(\mathcal{X})}$$
, $\mathcal{S}_0 \leftarrow \emptyset$

for
$$k = 1, 2, ...$$
 do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) Candidate search:

$$\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus \mathcal{I}_k$$

// Concatenation

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

(Optional) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

with initialization $(\mathbf{a}_{k-1/2}, \mathbf{x}_{k-1/2})$.

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

Our Polyatomic Algorithm (once again)

Polyatomic step

Same full correction

Optional sliding

Algorithm 5.4: Polyatomic Frank-Wolfe Algorithm for the B-LASSO

Initialize:
$$m_0 \leftarrow 0_{\mathcal{M}(\mathcal{X})}$$
, $\mathcal{S}_0 \leftarrow \emptyset$

for
$$k = 1, 2, ...$$
 do

Empirical dual certificate: $\eta_{k-1} \leftarrow \frac{1}{\lambda} \Phi^* \left(\mathbf{y} - \Phi(m_{k-1}) \right)$

1.a) Candidate search:

$$\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$$

1.b) Update active locations:

$$\mathbf{x}_{k-1/2} \leftarrow \mathbf{x}_{k-1} \oplus \mathcal{I}_k$$

// Concatenation

2) Full correction of the amplitudes:

$$\mathbf{a}_{k-1/2} \in \underset{\mathbf{a} \in \mathbb{R}^{N_k}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a}) \|_2^2 + \lambda \| \mathbf{a} \|_1$$

3) (Optional) Sliding step:

Find a local minimum of the problem

$$(\mathbf{a}_k, \mathbf{x}_k) \in \underset{(\mathbf{a}, \mathbf{x}) \in \mathbb{R}^{N_k} \times \mathcal{X}^{N_k}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}_{\mathbf{x}_{k-1/2}}(\mathbf{a})\|_2^2 + \lambda \|\mathbf{a}\|_1$$

with initialization ($\mathbf{a}_{k-1/2}$, $\mathbf{x}_{k-1/2}$).

Prune the active set:

$$\mathbf{x}_k \leftarrow \text{Prune}(\mathbf{a}_k, \mathbf{x}_k)$$

Choice of the atoms

1.a) Candidate search: $\mathcal{I}_k \leftarrow \texttt{Find_candidates}(\eta_{k-1})$

Critical step:

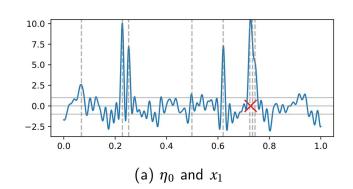
- Global optimality
- Relevant candidates (make progress)
- Spatial diversity

 $\left(\underset{x \in \mathcal{X}}{\operatorname{arg\,max}} |\eta_{k-1}(x)|\right) \cap \mathcal{I}_k \neq \emptyset$

 $\forall x \in \mathcal{I}_k, \quad |\eta_{k-1}(x)| \ge 1$

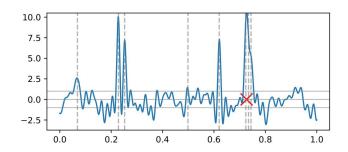
Target:

Local maxima of the dual certificate

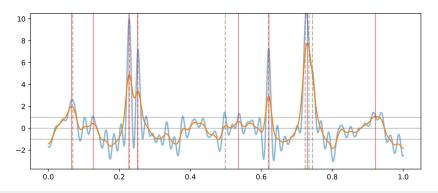


Candidate Selection Strategies

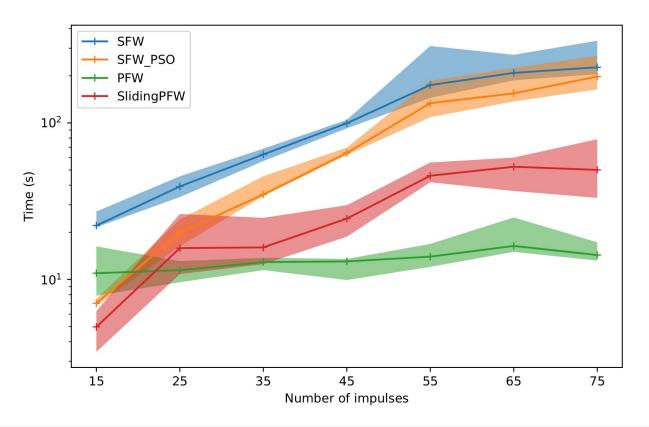
- Particles swarm optimization:
 - o Fast, 0th-order
 - Initialization-dependent, lack of accuracy and stability
- Particles gradient descent (p-GD)
 - Locally optimal
 - Initialization-dependent, computationally heavy



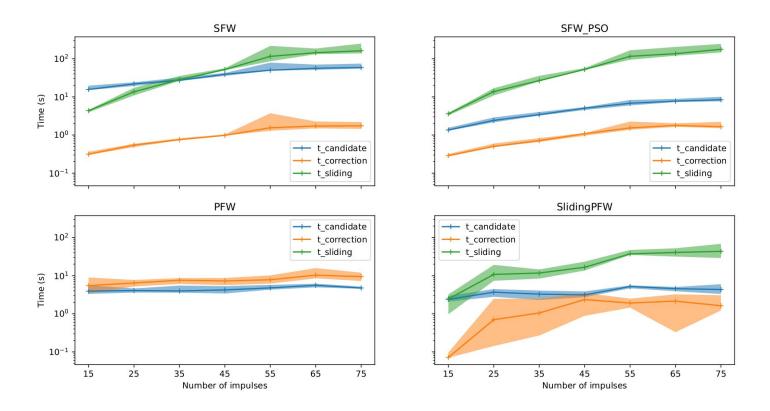
- Smoothing initialization
 - Filtering of non-relevant candidates



Results in Simulations



Results in Simulations



Conclusions

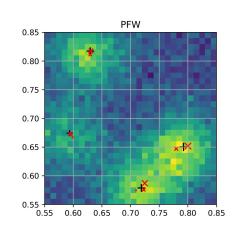
- PFW is faster in challenging contexts (high dimensions, large number of Dirac impulses)
- May be less precise than the reconstruction of SFW

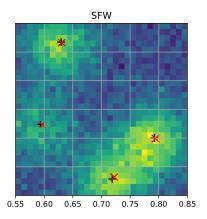
Alter	rnatives	and so	lutions	(WIP)):
-------	----------	--------	---------	-------	----

- Mix a few sliding steps (akin to minor/major cycles of CLEAN)
- Sparsify the solution (simplex algorithm)

	PFW	SFW	
Recovery time (s) Time for:	13.8	24.9	
- Candidate search	9.7	10.1	
- Full correction	4.2	0.2	
- Sliding	_	14.5	
Objective function ($\times 10^6$)	4.373	4.370	
Flat metric:			
- parameter $= 0.002$	0.031	0.027	
- parameter = 0.01	0.085	0.058	

Results for 2D Gaussian measurements





1. The PolyCLEAN Journey

- a. Polyatomic Frank-Wolfe for the LASSO
- b. A competitive Imaging Framework
- Reconstruction beyond the Grid
 - a. Another Polyatomic Approach
 - b. Decoupling of Composite Sparse-plus-Smooth problems
- 3. Conclusion

Chapter 6

Composite Sparse-plus-Smooth Problems

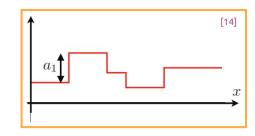
$$\mathbf{y} = \mathbf{\Phi}(s_1 + s_2) + \mathbf{n}$$

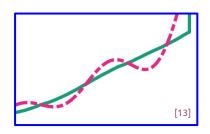
Sparse foreground Smooth background

$$\underset{s_1, s_2}{\operatorname{arg \; min}} \; \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(s_1 + s_2)\|_2^2 + \lambda_1 \|\mathbf{L}_1(s_1)\|_{\mathcal{M}} + \frac{\lambda_2}{2} \|\mathbf{L}_2(s_2)\|_{L_2}^2$$

Representer theorem^[6]:

- ullet $s_1^* o \mathsf{Sparse} \; \mathsf{spline}$
- $s_2^* \to \mathsf{Smooth}$ quadratic solution





[13] Debarre T et al. "Continuous-Domain Formulation of Inverse Problems for Composite Sparse-Plus-Smooth Signals", IEEE Open Journal of Signal Processing, 2021. [14] Unser M et al., "Splines Are Universal Solutions of Linear Inverse Problems with Generalized TV Regularization", SIAM Review, 2017.

Composite Sparse-plus-Smooth Problems

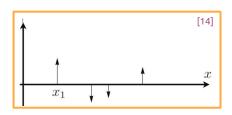
$$\mathbf{y} = \mathbf{\Phi}(s_1 + s_2) + \mathbf{n}$$

Sparse foreground Smooth background

$$\underset{s_1, s_2}{\operatorname{arg min}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(s_1 + s_2)\|_2^2 + \lambda_1 \| \quad s_1 \|_{\mathcal{M}} + \frac{\lambda_2}{2} \| \quad s_2 \|_{L_2}^2$$

Representer theorem^[6]:

• $s_1^* o Sparse measure$



$$\widehat{s}_1 = m[\widehat{\mathbf{a}}, \widehat{\mathbf{x}}]$$

$$\widehat{s}_2 = \Phi^* \widehat{\mathbf{u}}$$

[13] Debarre T et al. "Continuous-Domain Formulation of Inverse Problems for Composite Sparse-Plus-Smooth Signals", *IEEE Open Journal of Signal Processing*, 2021. [14] Unser M et al., "Splines Are Universal Solutions of Linear Inverse Problems with Generalized TV Regularization", *SIAM Review*, 2017.

Our Decoupling Representer Theorem

$$\underset{s_1, s_2 \in \mathcal{B} \times \mathcal{H}}{\arg \min} \ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(s_1 + s_2)\|_2^2 + \lambda_1 \|s_1\|_{\mathcal{B}} + \frac{\lambda_2}{2} \|s_2\|_{\mathcal{H}}^2$$

[Theorem 6.1]

$$\begin{cases} \widehat{s_1} \in \arg\min_{s_1 \in \mathcal{B}} \ \frac{1}{2} \|\mathbf{M}_{\lambda_2}^{-\frac{1}{2}} \left(\mathbf{y} - \mathbf{\Phi}(s_1)\right)\|_2^2 + \lambda_1 \|s_1\|_{\mathcal{B}} \\ \widehat{s_2} = \frac{1}{\lambda_2} \mathbf{\Phi}^* \mathbf{M}_{\lambda_2}^{-1} (\mathbf{y} - \mathbf{w}) \end{cases}$$

$$\frac{\mathbf{M}_{\lambda_2} := \frac{1}{\lambda_2} (\mathbf{\Phi} \mathbf{\Phi}^* + \lambda_2 \mathbf{I}_L)}{\mathbf{w} = \mathbf{\Phi}(\widehat{s_1})}$$

$$\mathbf{M}_{\lambda_2} := rac{1}{\lambda_2} \left(\mathbf{\Phi} \mathbf{\Phi}^* + \lambda_2 \mathbf{I}_L
ight) \ \mathbf{w} = \mathbf{\Phi}(\widehat{s_1})$$

Consequences:

- Decoupled reconstruction procedure
- Scaling of regularization parameters

Decoupling for Hilbert-plus-Banach Problems

$$\mathbf{M}_{\lambda_2} := \frac{1}{\lambda_2} \left(\mathbf{\Phi} \mathbf{\Phi}^* + \lambda_2 \mathbf{I}_L \right)$$

Theorem 6.1. Let $y \in \mathbb{R}^L$, $\lambda_1, \lambda_2 > 0$, $\Phi \in (\mathcal{A} \cap \mathcal{H})^L$. Then, the solution set $\mathcal{W}(\lambda_1, \lambda_2)$ is non-empty, convex, and weak*-compact in $\mathcal{B} \times \mathcal{H}$. Moreover, we can write

$$\mathcal{W}(\lambda_1, \lambda_2) = \mathcal{V}(\mathbf{M}_{\lambda_2}, \lambda_1) \times \{\hat{f}_2\}$$
(6.14)

with

$$\mathcal{V}(\mathbf{M}_{\lambda_{2}}, \lambda_{1}) = \underset{s_{1} \in \mathcal{B}}{\operatorname{argmin}} \|\mathbf{M}_{\lambda_{2}}^{-\frac{1}{2}} (\mathbf{y} - \mathbf{\Phi}(s_{1}))\|_{2}^{2} + \lambda_{1} \|s_{1}\|_{\mathcal{B}},$$

$$\widehat{s}_{2} = \frac{1}{\lambda_{2}} \mathbf{\Phi}^{*} \mathbf{M}_{\lambda_{2}}^{-1} (\mathbf{y} - \mathbf{w}),$$
(6.15)

$$\widehat{\mathbf{s}}_2 = \frac{1}{\lambda_2} \mathbf{\Phi}^* \mathbf{M}_{\lambda_2}^{-1} (\mathbf{y} - \mathbf{w}), \tag{6.16}$$

where the vector $\mathbf{w} = \mathbf{\Phi}(\widehat{s}_1)$ is unique and independent of the solution $\widehat{s}_1 \in \mathcal{V}(\mathbf{M}_{\lambda_2}, \lambda_1)$.

Consequences:

- Decoupled reconstruction procedure
- Scaling of regularization parameters

Scaling of Regularization Parameters

Proposition 6.3 (Maximum value of λ_1). Let \mathcal{X} be a continuous domain $\mathcal{X} = \mathbb{R}^d$ or $\mathcal{X} = \mathbb{T}^d$ for $d \in \mathbb{N}^*$.

We consider the composite optimization problem (6.12) where $\mathcal{B} = \mathcal{M}(\mathcal{X})$ and $\|\cdot\|_{\mathcal{B}} = \|\cdot\|_{\mathcal{M}}$. We define

$$\lambda_{1,\max} = \|\mathbf{\Phi}^* \mathbf{M}_{\lambda_2}^{-1} \mathbf{y}\|_{\infty}$$

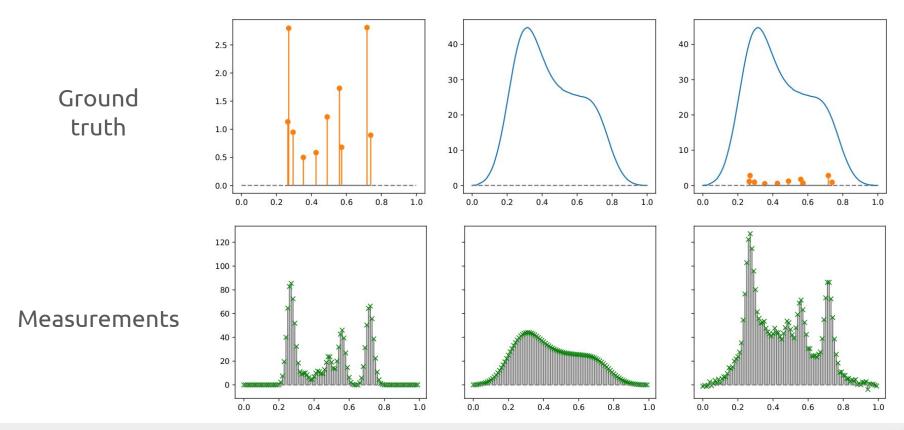
$$= \lambda_2 \|\mathbf{\Phi}^* \left(\mathbf{\Phi} \mathbf{\Phi}^* + \lambda_2 \mathbf{I}_L\right)^{-1} \mathbf{y}\|_{\infty}.$$
(6.18)

For any $\lambda_1 \ge \lambda_{1,max}$, the solution set for the Banach component is reduced to the singleton zero

$$\mathcal{V}(\mathbf{M}_{\lambda_2}, \lambda_1) = \{0\}$$

and Problem (6.12) is equivalent to a single-component Hilbert problem.

Simple reconstruction - Simulation

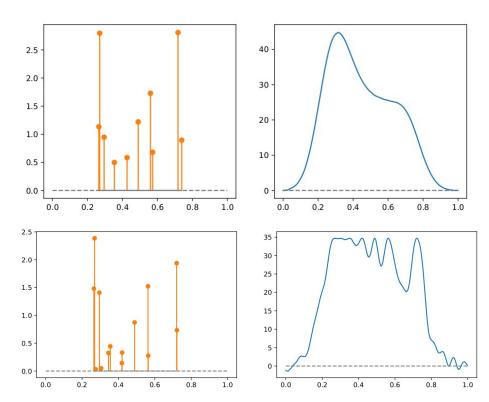


Adrian Jarret PhD Defense - 12.06.2025

Simple reconstruction - Results

Ground truth

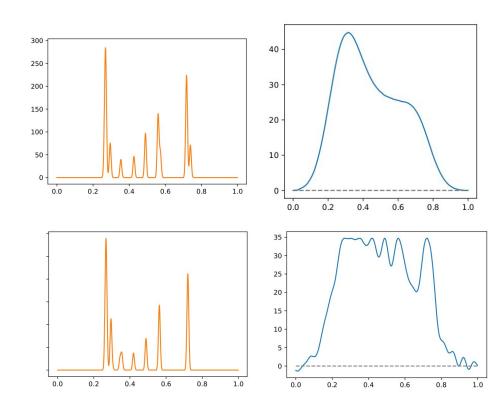
Reconstruction



Simple reconstruction - Results

Ground truth

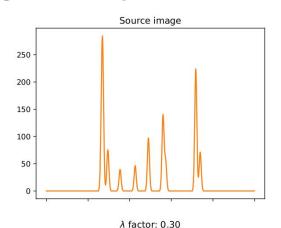
Reconstruction

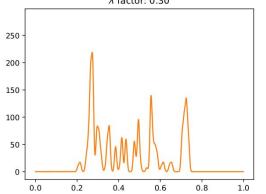


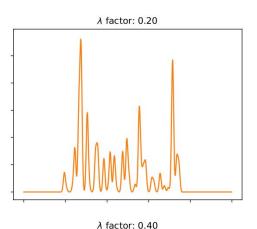
Comparison with single-component reconstruction

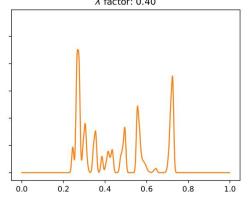
$$\underset{s_1 \in \mathcal{B}}{\operatorname{arg min}} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}(s_1)\|_2^2 + \lambda_1 \|s_1\|_{\mathcal{B}} \right\}$$

$$\lambda_1 = \lambda_f \cdot \lambda_{1,\max}$$





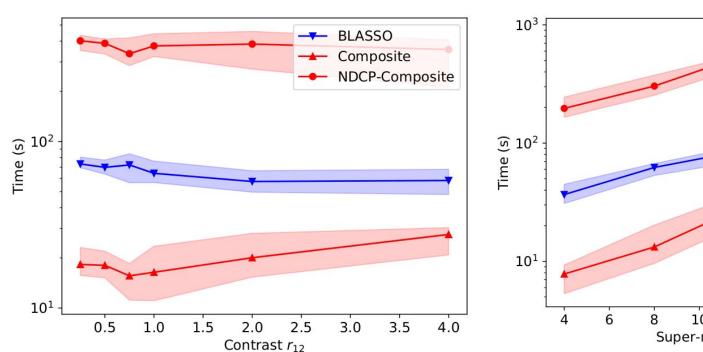


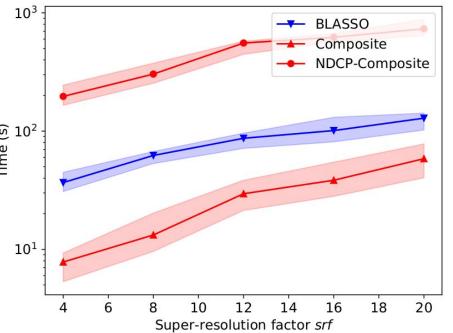


Adrian Jarret PhD Defense - 12.06.2025

Comparison with non-decoupled solving

$$r_{1/2} = \frac{\|\mathbf{\Phi}(s_1^{\dagger})\|_2}{\|\mathbf{\Phi}(s_2^{\dagger})\|_2}$$





Bonus: Discrete Problems with Operators

$$\underset{\mathbf{x}_{1},\mathbf{x}_{2}\in\mathbb{R}^{N}}{\arg\min} \frac{1}{2} \left\|\mathbf{y} - \mathbf{A}(\mathbf{x}_{1} + \mathbf{x}_{2})\right\|_{2}^{2} + \lambda_{1} \left\|\mathbf{L}_{1}\mathbf{x}_{1}\right\|_{1} + \frac{\lambda_{2}}{2} \left\|\mathbf{L}_{2}\mathbf{x}_{2}\right\|_{2}^{2}$$

Theorem 1 (RT for the composite problem (P_{12})). Under Assumptions [1] 2 and [3] the solution set [V] of $[P_{12}]$ can be written as the Cartesian product

$$\mathcal{V} = \mathcal{V}_1 \times \mathcal{V}_2$$

where:

1) The sparse variable \mathbf{x}_1 belongs to the set V_1 defined as

$$\mathcal{V}_{1} = \underset{\mathbf{x}_{1} \in \mathbb{R}^{N}}{\operatorname{arg \, min}} \left\{ \frac{1}{2} \left(\mathbf{y} - \mathbf{A} \mathbf{x}_{1} \right)^{T} \mathbf{M}_{\lambda_{2}} \left(\mathbf{y} - \mathbf{A} \mathbf{x}_{1} \right) + \lambda_{1} \left\| \mathbf{L}_{1} \mathbf{x}_{1} \right\|_{1} \right\} \quad (P_{1})$$
with $\mathbf{M}_{\lambda_{2}} = \lambda_{2} \mathbf{\Lambda}_{2} \left(\mathbf{A} \mathbf{A}^{T} + \lambda_{2} \mathbf{\Lambda}_{2} \right)^{-1}$;

- 2) All the sparse component solutions share the same measurement vector, that is there exists $\tilde{\mathbf{y}} \in \mathbb{C}^L$ such that any $\mathbf{x}_1^* \in \mathcal{V}_1$ satisfies $\mathbf{A}\mathbf{x}_1^* = \tilde{\mathbf{y}}$;
- 3) The smooth component solution is unique and independent of the sparse component, so that $V_2 = \{\mathbf{x}_2^*\}$. \mathbf{x}_2^* is the unique solution of the minimization problem

$$\underset{\mathbf{x}_{2} \in \mathbb{R}^{N}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{y} - \tilde{\mathbf{y}} - \mathbf{A}\mathbf{x}_{2}\|_{2}^{2} + \frac{\lambda_{2}}{2} \|\mathbf{L}_{2}\mathbf{x}_{2}\|_{2}^{2}, \quad (P_{2})$$

given by
$$\mathbf{x}_2^* = \mathbf{A}^T \left(\mathbf{A} \mathbf{A}^T + \lambda_2 \mathbf{\Lambda}_2 \right)^{-1} (\mathbf{y} - \tilde{\mathbf{y}}).$$

[8] Jarret A et al. "A Decoupled Approach for Composite Sparse-Plus-Smooth Penalized Optimization", 32nd European Signal Processing Conference (EUSIPCO), 2024

Bonus: Discrete Problems with Operators

$$\underset{\mathbf{x}_{1},\mathbf{x}_{2}\in\mathbb{R}^{N}}{\arg\min} \frac{1}{2} \|\mathbf{y} - \mathbf{A}(\mathbf{x}_{1} + \mathbf{x}_{2})\|_{2}^{2} + \lambda_{1} \|\mathbf{L}_{1}\mathbf{x}_{1}\|_{1} + \frac{\lambda_{2}}{2} \|\mathbf{L}_{2}\mathbf{x}_{2}\|_{2}^{2}$$

Assumption 1. The forward matrix $\mathbf{A} \in \mathbb{R}^{L \times N}$ is surjective, i.e., has full row rank, so that $\mathbf{A}\mathbf{A}^T$ is invertible.

Assumption 2. The nullspaces of the forward matrix and the regularization matrix $\mathbf{L}_2 \in \mathbb{R}^{M_2 \times N}$ have a trivial intersection, that is $\ker \mathbf{A} \cap \ker \mathbf{L}_2 = \{\mathbf{0}\}$.

Assumption 3. The vector space $\ker(\mathbf{A})^{\perp}$ is an invariant subspace of the operation $\mathbf{L}_2^T \mathbf{L}_2$, i.e., the following holds: $\mathbf{x} \in \ker(\mathbf{A})^{\perp} \Rightarrow \mathbf{L}_2^T \mathbf{L}_2 \mathbf{x} \in \ker(\mathbf{A})^{\perp}$.

Under Assumption 1 we define the matrix $\mathbf{\Lambda_2} \in \mathbb{R}^{L \times L}$ as

$$\mathbf{\Lambda_2} = \left(\mathbf{A}\mathbf{A}^T\right)^{-1}\mathbf{A}\mathbf{L}_2^T\mathbf{L}_2\mathbf{A}^T. \tag{1}$$