Interferometric Imaging in Radio Astronomy with the Sparsity-Promoting Frank-Wolfe Algorithm

Adrian Jarret, PhD student @EPFL/LCAV

joint work with Matthieu Simeoni, Julien Fageot, Martin Vetterli

SKA Days 2021

INTRODUCTION

Data Processing

INTRODUCTION

Data Model and Assumptions

From interferometric measurements to Inverse Problem

• Fourier-type measurements^[1]:

Van Cittert-Zernike theorem

$$\mathcal{V}(u,v) = \mathcal{F}\{I\}(u,v)$$
$$= \iint I(l,m)e^{-2i\pi(ul+vm)} dldm$$

• Linear inverse problem:

$$\mathbf{V} = \mathbf{\Phi}(I) \in \mathbb{C}^L$$
 Visibility Sky Image

Data Model and Assumptions

Optimization Problem

• Discretization:

$$I \approx \boldsymbol{\beta} \in \mathbb{R}^N \Rightarrow \mathbf{V} = \mathbf{G} \boldsymbol{\beta}$$

• Our strategy, LASSO^[2]:

Minimize:
$$\frac{1}{2} \| \mathbf{V} - \mathbf{G} \boldsymbol{\beta} \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1}$$

• Classical solvers: PDS^[3], APGD^[4], FISTA^[5]

															_									
-	border		1	+	Ŧ	+	+	+	+	Ŧ	+	+	+	+	Ŧ	+	+	+	+	ł	+	+	+	-
0	sour	ces	5	+	\pm	+	+	+	+	\pm	\pm	+	+	+	\pm	\pm	+	\pm	+	\pm	\pm	+	+	2
÷	+	÷	\pm	+	\pm	(\pm)	+	+	+	\pm	(\pm)	+	+	+	\pm	+	+	\pm	+	\pm	(\pm)	+	+	-
+	+	ŧ.	+	(+)	+	+	+	1	+	\pm	+	-	+	(+	0	+	-	+	+	+	+	+	+	-
÷	+	ŧ)	+	(\pm)	\pm	+	+	+	+	\pm	+	(+)	$^{+}$	+	+	+	+	+		+	+	+	÷	2-
÷	+	÷	\pm	+	\pm	+	+	\pm	(+)	\pm	+	+	\pm	+	+	+	+	\pm	+	\pm	$\left + \right $	+	\pm	2.4
+	+	÷	+	+	\oplus	+	+	+	+	\pm	+	+	+	+		+	+	+	+	\pm	+	+	+	2.4
÷	+ -	÷	÷	+	\pm	+	+	•	+	\pm	+	+	\pm	+	+	+	+	÷	+	\pm	$\left + \right $	$^+$	\pm	2.
÷	+	÷	÷	$^{+}$	÷	$^{+}$	+	+	+	÷	+	+	+	+	÷	+	+	•	+	÷	+	+	+	
÷	+	÷	÷	+	÷	+	+	+	+	÷	+	+	+	+	÷	+	+	+		÷	+	+	+	
÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
÷	+	+	÷	+	+	+	+	+	+	9	+	+	+	+	+	+	+	+	+	+	+	+	+	
÷	+	÷	+	+	+	+	+	+	+	+	0	+	+	+	+	+	+	+	+	+	+	+	+	į.
÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	6
÷	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
÷	+	+.	÷.	+	+	+	+	+	+	+	+	+	+	+	0	+	+	÷	+	+	+	+	+	
÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
÷	+	÷	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	Φ	+	+	+	+	
÷	+	÷	\pm	+	\pm	1	+	+	+	\pm	+	+	\pm	+	\pm	\pm	+	\pm	+	\pm	\pm	+	\pm	
÷	+	÷	\pm	+	\pm	+	+	-	0+	\pm	\pm	+	\pm	+	\pm	± 1	+	\pm	+	\pm	± 3	+	+	2
÷	+	÷.	+	(+)	\pm	+	+	4	+	\pm	+	-	+	(+)	+	+	+	+		\pm	+	+	+	-
+	+	÷.	+	(+)	\pm	+	+	+	(+)	\pm	+	-	+	(+)	+	+	-	+		\pm	+	+	+	
÷	+ -	÷	÷	+	\pm	+	+	+	+	\pm	+	+	+	+	\pm	+	+	+	+	\pm	(+)	+	÷	-
÷	+ -	÷	÷	+	\pm	+	+	\pm	+	\pm	+	+	\pm	+	\pm	+	+	\pm	+	\pm	(+)	+	÷	2.4
1	-	-	4	-	4	-		+	-		-	- 1-	4	+	1	-	-	1	-	7	-	-	+	

Our contribution: Reweighted Frank-Wolfe

Algorithm 1 Reweighted Frank-Wolfe (RFW)

Candidate locations: $S_k \leftarrow \emptyset$ for $k = 1, \cdots, k_{\max}$ do

1. Estimate new location(s): $i_k \in \underset{i \in \{1,...,N\}}{\operatorname{arg max}} |\mathbf{G}^* (\mathbf{V} - \mathbf{G}\boldsymbol{\beta}_k)|_i$

1.(bis) Update locations: $S_{k+1} \leftarrow S_k \cup \{i_k\}$

2. Complete best reweighting: $\boldsymbol{\beta}_{k+1} \leftarrow \underset{\operatorname{Supp}(\boldsymbol{\beta})\subset S_{k+1}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{V} - \mathbf{G}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$

Our contribution: Reweighted Frank-Wolfe

Algorithm 1 Reweighted Frank-Wolfe (RFW)

Candidate locations: $S_k \leftarrow \emptyset$ for $k = 1, \dots, k_{\max}$ do

1. Estimate new location(s): $i_k \in \underset{i \in \{1,...,N\}}{\operatorname{arg\,max}} |\mathbf{G}^* (\mathbf{V} - \mathbf{G}\boldsymbol{\beta}_k)|_i$

1.(bis) Update locations: $S_{k+1} \leftarrow S_k \cup \{i_k\}$

2. Complete best reweighting: $\boldsymbol{\beta}_{k+1} \leftarrow \underset{\operatorname{Supp}(\boldsymbol{\beta}) \subset S_{k+1}}{\operatorname{arg\,min}} \frac{1}{2} \| \mathbf{V} - \mathbf{G} \boldsymbol{\beta} \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1}$

Our contribution: Reweighted Frank-Wolfe

Algorithm 1 Reweighted Frank-Wolfe (RFW) Candidate locations: $S_k \leftarrow \emptyset$ for $k = 1, \dots, k_{\max}$ do 1. Estimate new location(s): $i_k \in \underset{i \in \{1,\dots,N\}}{\operatorname{arg min}} |\mathbf{G}^* (\mathbf{V} - \mathbf{G}\boldsymbol{\beta}_k)|_i$ 1.(bis) Update locations: $S_{k+1} \leftarrow S_k \cup \{i_k\}$ 2. Complete best reweighting: $\boldsymbol{\beta}_{k+1} \leftarrow \underset{\operatorname{Supp}(\boldsymbol{\beta}) \subset S_{k+1}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{V} - \mathbf{G}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$ end for

Our contribution: Reweighted Frank-Wolfe

Algorithm 1 Reweighted Frank-Wolfe (RFW)

Candidate locations: $S_k \leftarrow \emptyset$ for $k = 1, \cdots, k_{\max}$ do

1. Estimate new location(s): $i_k \in \underset{i \in \{1,...,N\}}{\operatorname{arg max}} |\mathbf{G}^* (\mathbf{V} - \mathbf{G}\boldsymbol{\beta}_k)|_i$ 1.(bis) Update locations: $S_{k+1} \leftarrow S_k \cup \{i_k\}$

Our contribution: Reweighted Frank-Wolfe

Our contribution: Reweighted Frank-Wolfe

Algorithm 1 Reweighted Frank-Wolfe (RFW)

Candidate locations: $S_k \leftarrow \emptyset$ for $k = 1, \cdots, k_{\max}$ do

1. Estimate new location(s): $i_k \in \underset{i \in \{1,...,N\}}{\operatorname{arg\,max}} |\mathbf{G}^* (\mathbf{V} - \mathbf{G}\boldsymbol{\beta}_k)|_i$ 1.(bis) Update locations: $S_{k+1} \leftarrow S_k \cup \{i_k\}$ 2. Complete best reweighting: $\boldsymbol{\beta}_{k+1} \leftarrow \underset{\operatorname{Supp}(\boldsymbol{\beta}) \subset S_{k+1}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{V} - \mathbf{G}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$

Our contribution: Reweighted Frank-Wolfe

Our contribution: Reweighted Frank-Wolfe

 Algorithm 1 Reweighted Frank-Wolfe (RFW)

 Candidate locations: $S_k \leftarrow \emptyset$

 for $k = 1, \dots, k_{\max}$ do

 1. Estimate new location(s): $i_k \in \underset{i \in \{1,\dots,N\}}{\operatorname{arg\,max}} |\mathbf{G}^* (\mathbf{V} - \mathbf{G}\boldsymbol{\beta}_k)|_i < \boldsymbol{\lambda}$ Natural Stopping Criterion

 1.(bis) Update locations: $S_{k+1} \leftarrow S_k \cup \{i_k\}$ Natural Stopping Criterion

 2. Complete best reweighting: $\boldsymbol{\beta}_{k+1} \leftarrow \underset{\operatorname{Supp}(\boldsymbol{\beta}) \subset S_{k+1}}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{V} - \mathbf{G}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

 end for

Data Simulation

Reweighted FW

Reweighted FW

2021.09.08

17

Performances on Simulated Data

Effect of λ

Adrian Jarret

$$\boxed{\text{Minimize}: \quad \frac{1}{2} \left\| \mathbf{V} - \mathbf{G} \boldsymbol{\beta} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{\beta} \right\|_{1}}$$

Effect of λ

Comparison with CLEAN

Dirty Image

Adrian Jarret

Comparison with CLEAN

Dirty Image

Conclusion

Is Reweighted Frank-Wolfe a decent contender for CLEAN?

- Competitive running time
- Improved reconstruction accuracy
- Natural stopping criterion

Conclusion

Is Reweighted Frank-Wolfe a decent contender for CLEAN?

- Competitive running time
- Improved reconstruction accuracy
- Natural stopping criterion
- Well suited for RA
 - Greedy = adapted to sparse problems
 - Parametric reconstruction (penalization parameter) = adjustable

Adrian Jarret

• Well suited for RA

Competitive running time

Natural stopping criterion

Improved reconstruction accuracy

- Greedy = adapted to sparse problems
- Parametric reconstruction (penalization parameter) = adjustable
- Positivity constraint
- Natural extension to continuous data
 - Beyond-the-grid precision
 - Principled theoretical framework

Conclusion

Is Reweighted Frank-Wolfe a decent contender for CLEAN?

References

- [1] Veen, Alle-Jan van der, Stefan J. Wijnholds, and Ahmad Mouri Sardarabadi. 2019. "Signal Processing for Radio Astronomy." In Handbook of Signal Processing Systems.
- [2] Tibshirani, Robert. 1996. "Regression Shrinkage and Selection via the Lasso." *Journal of the Royal Statistical Society. Series B* (*Methodological*) 58 (1): 267–88.
- [3] Condat, Laurent. 2013. "A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms." *Journal of Optimization Theory and Applications* 158 (2): 460–79.
- [4] Liang, Jingwei, Tao Luo, and Carola-Bibiane Schönlieb. 2021. "Improving 'Fast Iterative Shrinkage-Thresholding Algorithm': Faster, Smarter and Greedier." *ArXiv:1811.01430 [Math]*, January.
- [5] Beck, Amir, and Marc Teboulle. 2009. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems." *SIAM Journal on Imaging Sciences* 2 (1): 183–202.
- [6] Frank, Marguerite, and Philip Wolfe. 1956. "An Algorithm for Quadratic Programming." Naval Research Logistics Quarterly 3 (1–2): 95–110.

Appendice

If there is enough time

Improved CLEAN

Improved CLEAN

RRMSE: 0.746

